No CrossRef data available.
Article contents
The chronobiological pattern of opiate-related hyperphagia is different from the dual periodicity of monotonous food intake
Published online by Cambridge University Press: 04 February 2010
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Continuing Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1983
References
Apfelbaum, M. & Mandenoff, A. (1981a) Circadian rhythms. In: The body weight regulatory system: Normal and disturbed mechanisms, ed. Cioffi, L. A., James, W. P. T. & Van Itallie, T. B., pp. 299–304. Raven Press. [MA]Google Scholar
Apfelbaum, M. & Mandenoff, A. (1981b) Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacology, Biochemistry and Behavior 15:89–91. [MA]Google Scholar
Cohn, C. & Joseph, D. (1962) Influence of body weight and body fist on appetite of “normal” lean and obese rats. Yale Journal of Biology and Medicine 34:518–607. [BJR]Google Scholar
Faust, I. (1980) Nutrition and the fat cell. International Journal of Obesity 4:314–21. [JLM, BJR]Google Scholar
Frederickson, R. C. A., Burgus, V. & Edwards, D. J. (1977) Hyperalgesia induced by naloxone follows diurnal rhythms in responsivity to painful stimuli. Science 198:756–58. [MA]Google Scholar
Hell, N. S., Oliveira, L. B. C., Dolnikoff, M. S., Scivoletto, R. & Timo-laria, C. (1980) Changes of carbohydrate metabolism caused by food restriction as detected by insulin administration. Physiology & Behavior 24:473–77. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Valle, L. E. R. (1972) Site of action of 2-deoxy-D-glucose mediating gastric secretion in the cat. Journal of Physiology, London 221:1–13. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Valle, L. E. R. (1975) Neural systems responsible for gastric secretion provoked by 2-deoxy-D-glucose cytoglucopoenia. Journal of Physiology, London 252:565–84. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Vicentini, M. L. M. (1977) Regulation of gastric secretion by the central nervous system, In: Nerves and the gut, ed. Brooks, F. P. & Evers, P. W., pp. 377–427. Charles B. Slack. [CT-I]Google Scholar
Kadekaro, M., Timo-laria, C. & Vicentini, M. L. M. (1980) Gastric secretion provoked by functional cytoglucopoenia in the nuclei of the solitary tract in the cat. Journal of Physiology, London 299:397–407. [JLM, CT-I]Google Scholar
Larue-Achagiotis, C. & Le, Magnen J. (1983) Fast-induced changes in plasma glucose, insulin and free flitty acid concentration compared in rats during the night and day. Physiology & Behavior 30, in press. [JLM]CrossRefGoogle Scholar
Le, Magnen J. (1956) Hyperphagie provoquée chez le rat blanc par altération do mécanisme de satiété périphérique. Comptes rendus de Ia Société de Biologie 150:32–35. [BJR]Google Scholar
Le, Magnen J. (1981) The metabolic basis of dual periodicity of feeding in rats. Behavioral and Brain Sciences 4:561–75. [MA, BJR, CT-I]Google Scholar
Le, Magnen J. & Devos, M. (1983) Meal to meal energy balance in rats. Physiology & Behavior, in preparation. [JLM]CrossRefGoogle Scholar
Le, Magnen J., Devos, M. & Larue-Achagiotis, C. (1980) Food deprivation induced parallel changes in blood glucose, plasma free fatty acids and feeding during two parts of the diurnal cycle in rats. Neuroscience and Biobehavioral Review 4 (suppl):17–24. [JLM]Google Scholar
Le, Magnen J., Marfaing-Jallat, P., Micelli, D. & Devos, M. (1980) Pain modulating and reward systems: A single brain mechanism? Pharmacology, Biochemistry, and Behavior 12:729–33. [JLM]Google Scholar
Lima, F. B., Hell, N. S., Tirno-laria, C., Dolnikoff, M. S. & Pupo, A. A. (1982) Carbohydrate metabolism and food intake in food restricted rats. The effects of an unexpected meal. Submitted to Physiology & Behavior. [CT-I]CrossRefGoogle Scholar
Lima, F. B., Hell, N. S., Tirno-laria, C., Scivoletto, R., Dolnikoff, M. S. & Pupo, A. A. (1981) Metabolic consequences of food restriction in rats. Physiology & Behavior 27:115–23. [CT-I]CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J. (1983a) Dietary versus sensory factors in cafeteria-induced obesity. In preparation. [JLM]Google Scholar
Louis-Sylvestre, J. (1983b) Phase céphalique de sécrétion d'insuline et variété des aliments au cours du repas chez le rat. In preparation. [JLM]Google Scholar
Louis-Sylvestre, J. & Le, Magnen J. (1980) A fall in blood glucose level precedes meal onset in free feeding rats. Neurosciencc and Biobehavioral Review 4 (supp.1):13–16. [JLM]CrossRefGoogle ScholarPubMed
Mandenoff, A., Lenoir, T. & Apfelbaum, M. (1982) Tardy occurrence of adipocyte hyperplasia in cafeteria fed rats. American Journal of Physiology 242:349–51. [JLM]Google Scholar
Ponkos, K. P., Booth, C. & Van Itallie, T. B. (1977) Effect of covert nutritive dilution on the spontaneous food intake of obese individuals: A pilot study. American Journal of Clinical Nutrition 30:1638–44. [BJR]Google Scholar
Porikos, K. P., Hesser, M. F. & Van Itallie, T. B. (1982) Caloric regulation in normal-weight men maintained on a palatable diet of conventional foods. Physiology & Behavior 29:293–300. [BJR]Google Scholar
Powley, T. L. & Laughton, W. (1981) Neural pathways involved in the hypothalamic integration of autonomic responses. Diabetologia 30:378–87. [JLM]Google Scholar
Ritter, R. C., Slusser, P. G. & Stone, S. (1981) Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain. Science 213:451–53. [JLM]Google Scholar
Rodgers, P. J. & Blundell, J. E. (1980) Investigation of food selection and isseal parameters during the development of dietary induced obesity. Appetite 1:85–88. [JLM]Google Scholar
Rolls, B. J. (1979) How variety and palatability can stimulate appetite. Nutrition Bulletin 5:78–86. [BJR]Google Scholar
Rolls, B. J., Rolls, E. T., Rowe, E. A. & Sweeney, K. (1981) Sensory specific satiety in man. Physiology & Behavior 27:137–42. [JLM, BJR]Google Scholar
Rolls, B. J. & Rowe, E. A. (1977) Dietary obesity: Permanent changes in body weight. Journal of Physiology, London 272:2P. [BJR]Google Scholar
Rolls, B. J., Rowe, E. A., Rolls, E. T., Kingston, B., Megson, A. & Gunary, R. (1981) Variety in a meal enhances food intake in man. Physiology and Behavior 26:215–21. [JLM. BJR]CrossRefGoogle Scholar
Rolls, B. J., Rowe, E. A. & Turner, B. C. (1980) Persistent obesity in rats following a period of consumption of a mixed, high-energy diet. Journal of Physiology, London 298:415–27. [MA, JLM, BJR]Google Scholar
Rolls, E. T. (19811) Central nervous mechanisms related to feeding and appetite. British Medical Bulletin 37:131–34. [BJR]Google Scholar
Rolls, E. T. & Rolls, B. J. (1977) Activity of neurones in sensory, hypothalamic and motor areas during feeding in the monkey. In: Food intake and the chemical senses, ed. Katsuki, Y., Sato, M., Takagi, S. & Oomura, Y., pp. 525–40. University of Tokyo Press. [JLM, BJR]Google Scholar
Rolls, E. T. & Rolls, B. J. (1982) Brain mechanisms involved in feeding. In: Psychobiology of human food selection, ed. Barker, L. M.. A.V.I. Publishing Co. [BJR]Google Scholar
Rothwell, N. J. & Stock, M. J. (1979) A role for brown adipose tissue in diet- induced thermogenesis. Nature 281:31–35. [MA, BJR]Google Scholar
Sclafani, A. & Springer, D. (1976) Dietary obesity in adult rats: Similarities hypothalamic and human obesity syndromes. Physiology & Behavior 17:461–71. [MA, BJR]Google Scholar
Timo-laria, C. & Kadekaro, M. (1977) Rhomboencephalic reflex loops involved in vegetative response to cytoglucopoenia. Symposium on food and water intake, Gif-sur-Yvette. [JLM, CT-I]Google Scholar
Van Houten, M. & Posner, B. I. (1981) Cellular basis of direct insulin action in the central nervous system. Diabetologia 20:255–67. [JLM]Google Scholar
Wise, R. A., Spindler, J., deWit, H. & Gerber, G. J. (1978) Neuroleptic induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 201:262–64. [JLM]CrossRefGoogle ScholarPubMed
Xenakis, S. & Sclafani, A. (1982) The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats. Pharmacology, Biochemistry and Behavior 16:293–302. [JLM]CrossRefGoogle ScholarPubMed