Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T06:52:18.210Z Has data issue: false hasContentIssue false

Approximate number sense theory or approximate theory of magnitude?

Published online by Cambridge University Press:  27 July 2017

Alain Content
Affiliation:
Center for Research in Cognition & Neurosciences, Université libre de Bruxelles, CPI 191, B-1050 Brussels, Belgiumalain.content@ulb.ac.bemichael.vande.velde@ulb.ac.beandrea.adriano@ulb.ac.behttp://crcn.ulb.ac.be/lcld
Michael Vande Velde
Affiliation:
Center for Research in Cognition & Neurosciences, Université libre de Bruxelles, CPI 191, B-1050 Brussels, Belgiumalain.content@ulb.ac.bemichael.vande.velde@ulb.ac.beandrea.adriano@ulb.ac.behttp://crcn.ulb.ac.be/lcld
Andrea Adriano
Affiliation:
Center for Research in Cognition & Neurosciences, Université libre de Bruxelles, CPI 191, B-1050 Brussels, Belgiumalain.content@ulb.ac.bemichael.vande.velde@ulb.ac.beandrea.adriano@ulb.ac.behttp://crcn.ulb.ac.be/lcld

Abstract

Leibovich et al. argue that the evidence in favor of a perceptual mechanism devoted to the extraction of numerosity from visual collections is unsatisfactory and propose to replace it with an unspecific mechanism capturing approximate magnitudes from continuous dimensions. We argue that their representation of the evidence is incomplete and that their theoretical proposal is too vague to be useful.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anobile, G., Cicchini, G. M. & Burr, D. C. (2016c) Number as a primary perceptual attribute: A review. Perception 45 (1–2):531. doi: 10.1177/0301006615602599.Google Scholar
Cantlon, J. F., Platt, M. L. & Brannon, E. M. (2009b) Beyond the number domain. Trends in Cognitive Sciences 13(2):8391. doi: 10.1016/j.tics.2008.11.007.Google Scholar
Cicchini, G. M., Anobile, G. & Burr, D. C. (2016) Spontaneous perception of numerosity in humans. Nature Communications 7:12536. doi: 10.1038/ncomms12536.Google Scholar
Content, A. & Nys, J. (2016) The distribution game: Evidence for discrete numerosity coding in preschool children. In: Continuous issues in numerical cognition, ed. Henik, A., pp. 215–44. Elsevier. doi: 10.1016/B978-0-12-801637-4.00010-X.Google Scholar
Franconeri, S. L., Bemis, D. K. & Alvarez, G. A. (2009) Number estimation relies on a set of segmented objects. Cognition 113(1):113. doi: 10.1016/j.cognition.2009.07.002.CrossRefGoogle ScholarPubMed
Gebuis, T. & Reynvoet, B. (2012c) The role of visual information in numerosity estimation. PLoS ONE 7(5):e37426. doi: 10.1371/journal.pone.0037426.Google Scholar
He, L., Zhang, J., Zhou, T. & Chen, L. (2009) Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin and Review 16(3):509–17. doi: 10.3758/PBR.16.3.509.Google Scholar
Hurewitz, F., Gelman, R. & Schnitzer, B. (2006) Sometimes area counts more than number. Proceedings of the National Academy of Sciences of the United States of America 103(51):19599–604. doi: 10.1073/pnas.0609485103.CrossRefGoogle ScholarPubMed
Kirjakovski, A. & Matsumoto, E. (2016) Numerosity underestimation in sets with illusory contours. Vision Research 122:3442. doi: 10.1016/j.visres.2016.03.005.Google Scholar
Leibovich, T., Henik, A. & Salti, M. (2015) Numerosity processing is context driven even in the subitizing range: An fMRI study. Neuropsychologia 77:137–47. doi: 10.1016/j.neuropsychologia.2015.08.016.Google Scholar
Nys, J. & Content, A. (2012) Judgement of discrete and continuous quantity in adults: Number counts! Quarterly Journal of Experimental Psychology 65(4):675–90. doi: 10.1080/17470218.2011.619661.Google Scholar