Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T10:46:31.176Z Has data issue: false hasContentIssue false

Associative learning alone is insufficient for the evolution and maintenance of the human mirror neuron system

Published online by Cambridge University Press:  29 April 2014

Lindsay M. Oberman
Affiliation:
Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215. loberman@bidmc.harvard.eduhttp://www.tmslab.org
Edward M. Hubbard
Affiliation:
Department of Educational Psychology and Waisman Center, University of Wisconsin-Madison, Madison, WI 53705. emhubbard@wisc.eduhttp://website.education.wisc.edu/edneurolab
Joseph P. McCleery
Affiliation:
School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. j.p.mccleery@bham.ac.ukhttp://www.birmingham.ac.uk/staff/profiles/psychology/mcCleery-joe.aspx

Abstract

Cook et al. argue that mirror neurons originate from associative learning processes, without evolutionary influence from social-cognitive mechanisms. We disagree with this claim and present arguments based upon cross-species comparisons, EEG findings, and developmental neuroscience that the evolution of mirror neurons is most likely driven simultaneously and interactively by evolutionarily adaptive psychological mechanisms and lower-level biological mechanisms that support them.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dobkins, K. R., Bosworth, R. G. & McCleery, J. P. (2009) Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants. Journal of Vision 9(10):1911–21.CrossRefGoogle ScholarPubMed
Gastaut, H. J. & Bert, J. (1954) EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalography and Clinical Neurophysiology 6(3):433–44.CrossRefGoogle ScholarPubMed
Hagne, I. (1968) Development of the EEG in health infants during the first year of life, illustrated by frequency analysis. Electroencephalography and Clinical Neurophysiology 24(1):88.Google ScholarPubMed
Hari, R. & Salmelin, R. (1997) Human cortical oscillations: A neuromagnetic view through the skull. Trends in Neurosciences 20(1):4449.CrossRefGoogle ScholarPubMed
Howlin, P. & Moss, P. (2012) Adults with autism spectrum disorders. Canadian Journal of Psychiatry 57(5):275–83.Google ScholarPubMed
Huttenlocher, P. R. (2002) Neural plasticity. Harvard University Press.CrossRefGoogle Scholar
Imada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A. & Kuhl, P. K. (2006) Infant speech perception activates Broca's area: A developmental magnetoencephalography study. NeuroReport 17(10):957–62.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2011) Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience 1(1):721.CrossRefGoogle ScholarPubMed
Johnson, M. H., Halit, H., Grice, S. J. & Karmiloff-Smith, A. (2002) Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis. Development and Psychopathology 14(3):521–36.CrossRefGoogle ScholarPubMed
Lepage, J. F., Saint-Amour, D. & Théoret, H. (2008) EEG and neuronavigated single-pulse TMS in the study of the observation/execution matching system: Are both techniques measuring the same process? Journal of Neuroscience Methods 175(1):1724. doi: 10.1016/j.jneumeth.2008.07.021.CrossRefGoogle Scholar
Locke, J. L., Bekken, K. E., McMinn-Larson, L. & Wein, D. (1995) Emergent control of manual and vocal-motor activity in relation to the development of speech. Brain and Language 51(3):498508.CrossRefGoogle Scholar
Martineau, J. & Cochin, S. (2003) Visual perception in children: Human, animal and virtual movement activates different cortical areas. International Journal of Psychophysiology 51(1):3744.CrossRefGoogle ScholarPubMed
Oberman, L. M., McCleery, J. P., Hubbard, E. M., Bernier, R., Wiersema, J. R., Raymaekers, R. & Pineda, J.A. (2013) Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Social Cognitive and Affective Neuroscience 8(3):300–04.CrossRefGoogle ScholarPubMed
Oberman, L. M., Ramachandran, V. S. & Pineda, J. A. (2008) Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia 46(5):1558–65.CrossRefGoogle ScholarPubMed
Perry, A. & Bentin, S. (2009) Mirror activity in the human brain while observing hand movements: A comparison between EEG desynchronization in the mu-range and previous fMRI results. Brain Research 1282:126–32.CrossRefGoogle ScholarPubMed
Pineda, J. A. (2005) The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research and Brain Research Reviews 50(1):5768.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Fadiga, L. (1998) Grasping objects and grasping action meanings: The dual role of monkey rostroventral premotor cortex (area F5). Novartis Foundation Symposium 218 8195; discussion 95–103.Google ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996) Premotor cortex and the recognition of motor actions. Social Cognitive and Affective Neuroscience 3(2):131–41.Google ScholarPubMed
Smit, D. J., Boomsma, D. I., Schnack, H. G., Hulshoff Pol, H. E. & de Geus, E. J. (2012) Individual differences in EEG spectral power reflect genetic variance in gray and white matter volumes. Twin Research and Human Genetics 15(3):384–92.CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., Osborne, T. & Csibra, G. (2009) Predictive motor activation during action observation in human infants. Biology Letters 5(6):769–72. doi:10.1098/rsbl.2009.0474.CrossRefGoogle ScholarPubMed