Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T05:49:37.919Z Has data issue: false hasContentIssue false

Dopamine and mental illness: And what about the mesocortical dopamine system?

Published online by Cambridge University Press:  04 February 2010

J. P. Tassin
Affiliation:
Institut National de la Santé et de la Recherche Médicale, U.114, Collège de France, 75231 Paris Cedex 5, France

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, R. (1975) What's new in convulsive therapy? In: New dimensions in psychiatry, ed. Arieti, S. & Chronzanowski, G.. Wiley. [aNRs]Google Scholar
Adler, L. E., Pachtman, E., Franks, R. D., Pecevich, M., Waldo, M. C. & Freedman, R. (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biological Psychiatry 17:639–46 [rNRS]Google ScholarPubMed
Adler, L. E., Rose, G. & Freedman, R. (1986) Neurophysiological studies of sensory gating in rats: Effects of amphetamine, phencyclidine, and haloperidol. Biological Psychiatry 21:787–98. [rNRS]CrossRefGoogle ScholarPubMed
Akert, K. (1964) Comparative anatomy of the frontal cortex and thalamocortical connections. In: The frontal and granular cortex and behaviour, ed. Warren, J. M. & Akert, K.. McGraw-Hill. [JPT]Google Scholar
Akiskal, H. S. & McKinney, W. T. Jr (1975) Overview of recent research in depression. Archives ofCeneral Psychiatry 30:285. [aNRS]CrossRefGoogle Scholar
Alarcon, R. & De Carney, M. (1969) Severe depressive mood changes following slow release intramuscular fluphenazine injection. British Medical Journal 3:564. [arNRS]CrossRefGoogle ScholarPubMed
Albus, M., Ackenheil, M., Munch, U. & Naber, D. (1984) Ceruletide: A new drug for the treatment of schizophrenic patiens? Archives of General Psychiatry 41:528. [rNRS]CrossRefGoogle Scholar
Alfredsson, G., Harnryd, C. & Wiesel, F. A. (1985) Effects of sulpiride and chlorpromazine on autistic and positive symptoms in schizophrenic patients: Relationship to drug concentrations. Psychopharmacology 85:813. [PS]CrossRefGoogle ScholarPubMed
Alheid, C. F. & Heimer, L. (1985) The ventral-striato-pallidal (VSP) system and the substantia innominate (SI) complex of the rat. Abstract presented at Symposium: The neural and metabolic bases of feeding. Appetite 6:198. [GFA]Google Scholar
Alkon, D. L. (1983) Learning in a marine snail. Scientific American 7:7084. [DLC]CrossRefGoogle Scholar
Allen, A. & Rosse, R. B. (1986) Hospital evaluation and treatment of dementia. Resident & Staff Physician 32:7177. [rNRS]Google Scholar
American Medical Association (1985) Consensus conference: Electroconvulsive therapy. Journal of the American Medical Association 254:2103–8. [aNRS]CrossRefGoogle Scholar
American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders. American Psychiatric Association. [aNRS]Google Scholar
Amsel, A. (1962) Frustrative nonreward in partial reinforcement and discrimination learning: Some recent history and a theoretical extension. Psychological Review 69:306–28. [JAG]CrossRefGoogle Scholar
Amsterdam, J. D., Winokur, A., Lucki, I., Caroff, S., Snyder, P. & Rickels, K. (1983) A neuroendocrine test battery in bipolar patients and healthy subjects. Archives ofCeneral Psychiatry 40:515–22. [aNRS]CrossRefGoogle ScholarPubMed
Anden, N. E. (1977) Functional effects of local injections of dopamine and analogs into the neostriatum and nucleus accumbens. Advances in Biochemical Psychopharmacology 16:385–39. [AEK]Google ScholarPubMed
Andreasen, N. C., Nasrallah, H. A., Dunn, V., Olson, S. C., Grove, W. M., Ehrhardt, J. A., Coffman, J. A. & Crossett, J. H. W. (1986) Structural abnormalities in the frontal system in schizophrenia. Archives of General Psychiatry 43:136–47. [AEK]CrossRefGoogle ScholarPubMed
Andreasen, N. C. & Olsen, S. (1982) Negative and positive schizophrenia: Definition and validation. Archives of General Psychiatry 39: 789–94. [PS]CrossRefGoogle ScholarPubMed
Anisman, H., Irwin, J. & Sklar, L. S. (1979) Deficits of escape performance following catecholamine depletion: Implications for behavioral deficits induced by uncontrollable stress: Psychopharmacology 64:163–70. [aNRS]CrossRefGoogle ScholarPubMed
Anisman, H., Remington, G. & Sklar, L. S. (1979) Effects of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacology 61:107–24. [aNRS]CrossRefGoogle ScholarPubMed
Anisman, H., Suissa, A. & Sklar, L. S. (1980) Escape deficits induced by uncontrollable stress: Antagonism by dopamine and noradrenaline agonists. Behavioral and Neural Biology 28:3447. [aNRS]CrossRefGoogle ScholarPubMed
Arluison, M., Agid, Y. & Javoy, F. (1978) Dopaminergic nerve endings in the neostriatum of the rat. I. Identification by intracerebral injections of 5 hydroxydopamine. Neurosdence 3:657–73. [JHF]CrossRefGoogle Scholar
Bak, I. J., Choi, W. B., Hessler, R., Usunoff, K. G. & Wagner, A. (1975) Fine structural synaptic organization of the corpus striatum and substantia nigra in rat and cat. In: Dopaminergic mechanisms, ed. Calne, D., Chase, T. & Barbeau, A.. Raven Press. [JHF]Google Scholar
Baldessarini, R. J. (1977) Chemotherapy in psychiatry. Harvard University Press. [AAG]Google Scholar
Baldessarini, R. J. & Tarsy, D. (1980) Dopamine and the pathophysiology of dyskinesias induced by antipsychotic drugs. Annual Review of Neurosdence 3:2341. [aNRS]CrossRefGoogle ScholarPubMed
Ballenger, J. C. & Post, R. M. (1980) Carbamazepine in manic-depressive illness: A new treatment. American Journal of Psychiatry 137:782–90. [aNRS]Google ScholarPubMed
Bank, B., Coulter, D., Rasmussen, H., Chute, D. L. & Alkon, D. L. (1986) Effects of NMR conditioning on intracellular distribution of protein kinase C. Society for Neurosdence Abstracts (51.9) 1:182. [DLC]Google Scholar
Bank, B., Gurd, J. & Chute, D. L. (1986) Decreased phosphorylation of synaptic glycoproteins following hippocampal kindling. Brain Research 399:390–94. [DLC]CrossRefGoogle ScholarPubMed
Bannon, M. J., Michaud, R. L. & Roth, R. H. (1981) Mesocortical dopamine neurons: Lack of autoreceptors modulating dopamine synthesis. Molectdar Pharmacology 19:270–75. [GEJ]Google ScholarPubMed
Bannon, M. J. & Roth, R. H., (1983) Pharmacology of mesocortical dopamine neurons. Pharmacological Reviews 35:5368. [GEJ]Google ScholarPubMed
Bartholini, C., Scatton, B., Worms, P., Zivkovic, B. & Lloyd, K. G. (1981) Interactions between GABA, dopamine, acetylcholine and glutamatecontaining neurons in the extrapyramidal and limbic systems. In: GABA and the basal ganglia. Raven Press. [aNRS]Google Scholar
Baxter, L. R., Phelps, M. E., Maziotta, J. C., Schwartz, J. C., Gerner, R. H., Selin, G. E. & Sumida, R. M. (1985) Cerebral metabolic rates for glucose in mood disorders. Archives ofCeneral Psychiatry 42:441–47. [arNRS]CrossRefGoogle ScholarPubMed
Beart, P. M., Summers, R. J. & Christie, M. J. (1986) Mapping of excitatory amino acid projections to central gray and nucleus accumbens by D[3H]aspartate retrograde transport. In: Excitatory amino acid transmission, ed. Hicks, T., Lodge, D. & McLennan, H.. Plenum. [PMB]Google Scholar
Beckstead, R. M. (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. Journal of Comparative Neurology 184:4362. [GEJ, AEK]CrossRefGoogle ScholarPubMed
Beigel, A. & Murphy, D. L. (1971) Unipolar and bipolar affective illness: Differences in clinical characteristics accompanying depression. Archives of General Psychiatry 24:215–20. [AEK]CrossRefGoogle ScholarPubMed
Beninger, R. J. & Hahn, B. L. (1983) Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning. Sdence 220:1304–6. [PS]Google Scholar
Bennett, J. P., Enna, S. J., Bylund, D. B., Gillin, J. C., Wyatt, R. J. & Snyder, S. H. (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Archives of General Psychiatry 36:927–34. [aNRS]CrossRefGoogle ScholarPubMed
Bernardi, G., Cherubini, E., Marciani, G., Mercuri, N. & Stanzione, P. (1982) Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine. Brain Research 245:267–74. [rNRS]CrossRefGoogle Scholar
Bird, E. D., Barnes, J., Iversen, L. L., Spokes, E. G., Mackay, A. V. P. & Shepherd, M. (1977) Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Lancet 2:1157–58. [aNRS]CrossRefGoogle ScholarPubMed
Bird, E. D., Crow, T. J., Iversen, L. L., Longden, A., Mackay, A. V. P., Riley, G. J. & Spokes, E. G. (1979) Dopamine and homovanillic acid concentrations in postmortem brain in schizophrenia. Journal of Physiology 293:3637. [aNRS]Google ScholarPubMed
Bird, E. D., Spokes, E. G. & Iversen, L. L. (1979) Increased dopamine concentrations in limbic areas of brain from patients dying with schizophrenia. Brain 102:347–60. [aNRS, PMB]CrossRefGoogle ScholarPubMed
Blanc, G., Hervfi, D., Simon, H., Lisoprawski, A., Glowinski, J. & Tassin, P. (1980) Response to stress of meso-cortico-frontal DA neurons in rats after long-term isolation. Nature 284:265–67. [JPT]CrossRefGoogle Scholar
Bloom, F. E., Costa, F. & Salmoiraghi, G. (1965) Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. Journal of Pharmacology and Experimental Therapeutics 150:244–52. [JHF]Google ScholarPubMed
Bogerts, B., Meertz, E. & Schonfeldt-Bausch, R. (1985) Basal ganglia and limbic system pathology in schizophrenia. Archives of General Psychiatry 42:784–91. [JRS]CrossRefGoogle ScholarPubMed
Borsini, F., Pulvirenti, L. & Saminin, R. (1985) Evidence of dopamine involvement in the effect of repeated treatment with various antidepressants in the behavioural “despair” test in rats. European Journal of Pharmacology 110:253–56. [PS]CrossRefGoogle ScholarPubMed
Bowers, M. B. Jr, (1974) Central dopamine turnover in schizophrenic syndromes. Archives of General Psychiatry 31:5054. [aNRS]CrossRefGoogle ScholarPubMed
Bowers, M. B. Jr, & Hoffman, F. J. Jr, (1986) Homovanillic acid in caudate and prefrontal cortex following acute and chronic neuroleptic administration. Psychopharmacology 88:6365. [GEJ]CrossRefGoogle ScholarPubMed
Braff, D. L., Stone, C., Callaway, E., Geyer, M., Click, I. & Bali, L. (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–43. [arNRS]CrossRefGoogle ScholarPubMed
Braff, D. L., Swerdlow, N. R., Geyer, M., Mansbach, J. & Koob, G. (1986) Sensory gating deficits in rat acoustic startle: Effects of psychostimulants. Abstracts: American College of Neuropsychopharmacology. [rNRS]Google Scholar
Breier, A., Doran, A., Wolkowitz, O., Hommer, D. & Pickar, D. (1986) Negative and positive symptoms of schizophrenia: Pharmacologic and etiologic considerations. Presented at the Society of Biological Psychiatry, May 1986; Washington, D.C. [PS]Google Scholar
Bridge, S., Christie, M. J., & Beart, P. M. (1986) No change in neostriatal D-2 dopamine receptors after NMDA lesions of rat prefrontal cortex. Pharmacology, Biochemistry and Behaviour 24:1829–32. [PMB]CrossRefGoogle ScholarPubMed
Bridge, T. P., Kleinman, J. E., Soldo, B. J. & Karoum, F. (1987) Central catecholamines, cognitive impairment and affective state in elderly schizophrenics and controls. Biological Psychiatry 22:139–47. [rNRS]CrossRefGoogle ScholarPubMed
Bruyn, G. W. (1968) Huntington's chorea: Historical, clinical and laboratory synopsis. In: Handbook of clinical neurology, ed. Vinken, P. & Bruyn, G. W.. Elsevier. [aNRS]Google Scholar
Buchsbaum, M. S. & Rieder, R. O. (1979) Biologic heterogeneity and psychiatric research. Archives of General Psychiatry 36:1163–69. [AW]CrossRefGoogle Scholar
Bunney, B. S. & Grace, A. A. (1978) Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity. Life Sciences 23:1715–28. [AAG]CrossRefGoogle ScholarPubMed
Bunney, W. E. Jr, & Davis, M. (1965) Norepinephrine in depressive reactions. Archives of General Psychiatry 13:483–94. [aNRS]CrossRefGoogle ScholarPubMed
Bunney, W. E. Jr, Post, R. M., Anderson, A. E. & Kopanda, R. T. (1977) A neuronal receptor sensitivity mechanism in affective illness (a review of evidence). Community Psychopharmacology 1:393405. [aNRS]Google ScholarPubMed
Cancro, R. (1979) Genetic evidence for the existence of subgroups of the schizophrenic syndrome. Schizophrenic Bulletin 5:453–59. [AW]CrossRefGoogle ScholarPubMed
Carnoy, P., Ravard, S., Wemerman, B., Soubrie, P. & Simon, P. (1986) Behavioral deficits induced by low doses of apomorphine in rats: Evidence for a motivational and cognitive dysfunction which discriminates among neuroleptic drugs. Pharmacology Biochemistry and Behavior 25:503–9. [PS]CrossRefGoogle ScholarPubMed
Carlton, P. L. (1984) Analysis of physiological mechanism in psychopharmacology. Neuropsychobiology 12:158–72. [aNRS]Google ScholarPubMed
Carr, G. D. & White, N. M. (1983) Conditioned place preference from intraaccumbens but not intra-caudate amphetamine injections. Life Sciences 33:2551–57. [AEK]CrossRefGoogle Scholar
Carr, G. D. & White, N. M. (1986) Anatomical disassociation of amphetamine's rewarding and aversive effects: An intracranial microinjection study. Psychopharmacology 89:340–46. [AEK]CrossRefGoogle ScholarPubMed
Carter, C. J. (1980) Glutamergic pathways from the medial prefrontal cortex to the anterior striatum, nucleus accumbens and substantia nigra. British Journal of Pharmacology 70:50P51P. [GEJ]Google Scholar
Cash, R., Dennis, T., L'Heureux, R., Raisman, R., Javoy-Agid, F. & Scatton, B. (1987) Parkinson's disease and dementia: Norepinephrine and dopamine in locus ceruleus. Neurology 37:4246. [rNRS]CrossRefGoogle ScholarPubMed
Celesia, G. G. & Wanamaker, W. M. (1972) Psychiatric disturbances in Parkinson's diesase. Diseases of the Nervous System 33:577–83. [rNRS]Google Scholar
Charney, D. S., Menkes, D. B. & Heninger, G. R. (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment. Archives of General Psychiatry 38:1160–80. [AEK]CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Berger, T. W. (1986) Interactions between dopamine and amino acid induced excitation and inhibition in the striatum. Brain Research 375:198203. [AAG]CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Bunney, B. S. (1983) Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. Journal of Neuroscience 3:160719. [AAG]CrossRefGoogle ScholarPubMed
Christie, M. J., Bridge, S., James, L. B. & Beart, P. M. (1985) Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Research 333:169–72. [PMB]CrossRefGoogle ScholarPubMed
Christie, M. J., James, L. B. & Beart, P. M. (1985) An excitant amino acid projection from the medial prefrontal cortex to the anterior part of the nucleus accumbens in the rat. Journal of Neurochemistry 45:477–82. [PMB]CrossRefGoogle Scholar
Christie, M. J., Rowe, P. J. & Beart, P. M. (1986) Effect of excitotoxin lesions in the medial prefrontal cortex on cortical and subcortical catecholamine turnover in the rat. Journal of Neurochemistry 47:1593–97. [PMB]CrossRefGoogle ScholarPubMed
Christie, M. J., Summers, R. J., Stephenson, J. A., Cook, C. J. & Beart, P. M. (in press) Excitatory amino acid projections in the rat brain. 1. Nucleus accumbens septi: A retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience. [PMB]Google Scholar
Chui, H. C., Mortimer, J. A., Slager, U., Zarow, C., Bondareff, W. & Webster, D. D. (1986) Pathological correlates of dementia in Parkinson's disease. Archives of Neurology 43:991–95. [AEK]CrossRefGoogle ScholarPubMed
Chute, D. L., Bank, B., Brooks, P. J., & Villiger, J. W. (1985) Intracellular biochemical events and mammalian behavior. Presented at the 4th World Congress of Biological Psychiatry, Philadelphia. [DLC]Google Scholar
Clayton, P., Pitts, F. N. Jr, & Winokur, G. (1965) Affective disorder: IV. Mania. Comparative Psychiatry 6:313–22. [AEK]CrossRefGoogle ScholarPubMed
Coffman, J. A., Andreasen, N. C. & Nasrallah, H. A. (1984) Left hemispheric density deficits in chronic schizophrenia Biological Psychiatry 19:1237–47. [AEK]Google ScholarPubMed
Cohen, D. H. (1986) Coming of age in neuroscience. Trends in Neurosciences 9:450–52. [MLM]CrossRefGoogle Scholar
Connor, J. D. (1970) Caudate nucleus neurons: Correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. Journal of Physiology-London. 208:691703. [rNRS]CrossRefGoogle ScholarPubMed
Cools, A. R. (1985a) Morphine and specific changes in the sensitivity of noradrenergic receptors within the “limbic” part of the feline caudate nucleus: A behavioural study. Brain Research Bulletin 14:239–50. [PMB]CrossRefGoogle Scholar
Cools, A. R. (1985b) Brain and behavior: Hierarchy of feedback systems and control of input. In: Perspectives in Ethology 6 (Mechanisms), ed. Bateson, P. P. G. & Klopfer, P. H.. Plenum. [ARC]Google Scholar
Cools, A. R., Jaspers, R., Schwartz, M. & Sontag, K. (1980) Basal ganglia and switching motor programs. In: The basal ganglia, ed. McKenzie, S., Kenin, R. & Wilcop, L.. Plenum. [aNRS]Google Scholar
Cools, A. R., Jaspers, R., Schwarz, M., Sontag, K. H., Vrijmoed-de Vries, M. & van den Bercken, J. (1984) Basal ganglia and switching motor programs. In: The basal ganglia, ed. McKenzie, J. S., Kemm, R. E. & Wilcock, L. N.. Plenum. [ARC]Google Scholar
Cools, A. R., van den Berken, J., Horstink, M., van Spaendonok, K. & Berger, H. (1984) Cognitive and motor shifting aptitude disorder in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry 47:443–53. [aNRS]CrossRefGoogle ScholarPubMed
Coppen, A. (1967) The biochemistry of affective disorders. British Journal of Psychiatry 113:1237–64. [aNRS]CrossRefGoogle ScholarPubMed
Costall, B., Domeney, A. M. & Naylor, R. J. (1982) Behavioral and biochemical consequences of persistent overstimulation of mesolimbic dopamine systems in the rat. Neuropharmacology 21:327–35. [aNRS]CrossRefGoogle ScholarPubMed
Costall, B., Kelly, D. M. & Naylor, R. J. (1975) Nomifensine: A potent dopamine agonist of antiparkinson potential. Psychopharmacologia 4:153–64. [arNRS]CrossRefGoogle Scholar
Crawley, J. N., Stivers, J. A., Blumstein, L. K. & Paul, S. M. (1985) Cholecystokinin potentiates dopamine-mediated behaviors: Evidence for modulation specific to a site of coexistence. Journal of Neuroscience Research 5:1972–83. [rNRS]CrossRefGoogle ScholarPubMed
Creese, I., Burt, D. R. & Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–82. [aNRS, CEJ]CrossRefGoogle ScholarPubMed
Creese, I. & Iversen, S. D. (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Research 83:419–36. [aNRS]CrossRefGoogle ScholarPubMed
Creese, I. & Sibley, D. R. (1981) Receptor adaptations to centrally acting drugs. Annual Review of Pharmacology and Toxicology 21:357–89. [aNRS]CrossRefGoogle ScholarPubMed
Cross, A. J., Crow, T. J., Killpack, W. S., Longden, A., Owen, F. & Riley, G. J. (1978) The activity of brain dopamine-beta-hydroxylase and catechol-O-methyl-transferase in schizophrenics and controls. Psychopharmacology(Berlin) 59:117–21. [aNRS]CrossRefGoogle ScholarPubMed
Cross, A. J., Crow, T. J. & Owen, F. (1981) 3-H-flupenthixol binding in postmortem brains of schizophrenics: Evidence for a selective increase in dopamine D2 receptors. Psychopharmacology 74:122–24. [arNRS]CrossRefGoogle ScholarPubMed
Crow, T. J. (1980) Molecular pathology of schizophrenia: More than one disease process? British Medical Journal 280:6668. [aNRS]CrossRefGoogle ScholarPubMed
Crow, T. J. (1982) Two syndromes in schizophrenia? Trends in Neurosciences 5:351–54. [AP]CrossRefGoogle Scholar
Crow, T. J., Corsellis, J. A. N., Cross, A. J., Frith, C. D., Johnstone, E. C., Owen, F., Bloxham, C. A., Ferrier, I. N. & Owens, D. G. C. (1981) The search for changes underlying the type II syndrome of schizophrenia. In: Biological psychiatry. Elsevier. [aNRS]Google Scholar
Crow, T. J., Cross, A. J., Johnson, J. A., Johnstone, E. C., Joseph, M. H., Owen, F., Owens, D. G. C. & Poutler, M. (1984) Catecholamines and schizophrenia: An assessment of the evidence. In: Catecholamines: Neuropharmacology and central nervous system-therapeutic aspects. Alan R. Liss. [aNRS]Google Scholar
Csernancky, J. C., Csernansky, C. A., Bonnet, K. A. & Hollister, L. E. (1985) Dopaminergic supersensitivity follows ferric chloride-induced limbic seizures. Biological Psychiatry 20:723–33. [aNRS]CrossRefGoogle Scholar
Csernansky, J. G., Csemansky, C. A., Glick, S. A. & Hollister, L. E. (1985) Lidocaine kindling is accompanied by an increase in apomorphine stereotypy and mesolimbic dopamine D2 receptor density. Psychopharmacology Bulletin 21:707–11. [aNRS]Google ScholarPubMed
D'Agata, R., Paci, C., Buongiorno, C, Gulizia, S., Marchetti, B., Gerendi, I., Posolo, P. & Rapisarda, V. (1979) Abnormal response of prolactin to TRH stimulus in depression. In: Neuroendocrine correlates in neurology and psychiatry. Elsevier/North Holland. [aNRS]Google Scholar
Danielezyk, W. (1983) Various mental behavioral disorders in Parkinson's disease, primary degenerative senile dementia and multiple infarction dementia. Journal of Neural Transmission 56:161–76. [rNRS]CrossRefGoogle Scholar
Davis, J. M. (1978) Dopamine theory of schizophrenia: A two-factor theory. In: The nature of schizophrenia. Wiley. [aNRS]Google Scholar
Davis, M. & Aghajanian, G. K. (1976) Effects of apomorphine and haloperidol on the acoustic startle response in rats. Psychopharmacology 47:217223. [aNRS]CrossRefGoogle ScholarPubMed
Davis, M. & Kehne, J. (1985) Cocaine-excitatory effects of sensorimotor reactivity measured with acoustic startle. Psychopharmacology 86:3136. [aNRS]CrossRefGoogle ScholarPubMed
DeFrance, J. F., Sikes, R. W. & Gottesfeld, Z. (1983) Regional distribution of catecholamines in nucleus accumbens of the rabbit. Journal of Neuwchcmistry 40:291–93. [rNRS, PMB]CrossRefGoogle ScholarPubMed
Dement, W., Zarcone, V., Ferguson, J., Cohen, H., Pivin, T. & Barchas, J. (1968) Some parallel findings in schizophrenic patients and serotonindepleted cats. Psychophysiology 5:239–51. [aNRS]Google Scholar
De Olmos, J. S., Alheid, G. F. & Beltramino, C. A. (1985) The amygdala. In: The rat nervous system, vol. 1: Forebrain and midbrain, ed. Paxinos, G.. Academic Press. [GFA]Google Scholar
Depue, R. A. & Monroe, S. M. (1978) The unipolar-bipolar distinction in the depressive disorders. Psychological Bulletin 85:1001–29. [AEK]CrossRefGoogle ScholarPubMed
Detre, T., Himmelhoch, J., Swartzburg, M., Anderson, C. M., Byck, R. & Kupfer, D. J. (1972) Hypersomnia and manic-depressive disease. American Journal of Psychiatry 128:1303–5. [AEK]CrossRefGoogle ScholarPubMed
deWit, H. & Wise, R. A. (1978) Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine and phenoxybenzamine. Canadian Journal of Psychology 31:195203. [aNRS]CrossRefGoogle Scholar
Divac, I., Bjorklund, A., Lindvall, O. & Passingham, R. E. (1978) Converging projections from the medio-dorsal nucleus and mesencephalic dopaminergic neurons to the neocortex in three species. Journal of Comparative Neurology 180:5972. [GE], JPT]CrossRefGoogle Scholar
Downs, N. S., Britton, K. T., Gibbs, D. M., Koob, G. F. & Swerdlow, N. R. (1986) Supersensitive endocrine response to physostigmine in dopamine depleted rats: A model of depression. Biological Psychiatry 21:773. [arNRS]CrossRefGoogle ScholarPubMed
Dray, A. & Oakley, N. R. (1978) Projections from nucleus accumbens to globus pallidus and substantia nigra in the rat. Experientia 34:6870 [rNRS]CrossRefGoogle ScholarPubMed
Ehlers, C. L., Indik, J. H., Koob, G. F. & Bloom, F. E. (1983) The effect of a single and repeated electroconvulsive shock (ECS) on locomotor activity in rats. Progress in Neuropsychopharmacology and Biological Psychiatry 7:217–22. [aNRS]CrossRefGoogle ScholarPubMed
Ehlers, C. L. & Koob, G. F. (1985) Locomotor behavior following kindling in three different brain sites. Brain Research 326:7179. [aNRs]CrossRefGoogle ScholarPubMed
Emson, P. C. & Koob, G. F. (1978) The origin and distribution of dopamine containing afferents to the rat frontal cortex. Brain Research 142:249–67. [aNRS]CrossRefGoogle Scholar
Endo, K., Araki, T. & Yagi, N. (1973) The distribution and pattern of axon branching of pyramidal tract cells. Brain Research 57:484–91. [aNRS]CrossRefGoogle ScholarPubMed
Fallon, J. H., Hicks, R. & Loughlin, S. E. (1983) The origin of cholecystokinin terminals in the basal forebrain of the rat: Evidence from immunofluorescence and retrograde tracing. Neuroscience Letters 37:2935. [JHF]CrossRefGoogle ScholarPubMed
Fallon, J. H. & Loughlin, S. E. (in press) Monoamines in the cerebral cortex and a theory on the functions of monoamines in cortex and basal ganglia. In: Cerebral cortex, vol. 6, ed. Jones, E. G. & Peters, A.. [JHF]Google Scholar
Fallon, J. H., Loughlin, S. E. & Ribak, C. E. (1983) The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a striatopallidal system. Journal of Comparative Neuroscience 16:19120. [JHF]Google Scholar
Farkas, T.Wolf, A. P., Jaeger, J., Brodie, J. D., Christman, D. R. & Fowler, J. S. (1984) Regional brain glucose metabolism in chronic schizophrenia. Archives of General Psychiatry 41:293300. [AW]CrossRefGoogle ScholarPubMed
Farley, I. J., Price, K. S., McCullough, E., Deck, J. H. N., Hordynski, W. & Hornykiewicz, O. (1978) Norepinephrine in chronic paranoid schizophrenia: Above-normal levels in limbic forebrain. Science 200:456–58. [PMB]CrossRefGoogle ScholarPubMed
Feltz, P. & Albe-Fessard, D. (1972) A study of an ascending nigrocaudate pathway. Electroencephalography and Clinical Neurophysiology-EEG Journal 33:179–93. [JHF]CrossRefGoogle ScholarPubMed
Fibiger, H. C. (1984) The neurobiological substrates of depression in Parkinson's disease: A hypothesis. Canadian Journal of Neurological Sciences 11:105–7. [HCF]CrossRefGoogle ScholarPubMed
Fibiger, H. C., Carter, D. A. & Phillips, A. G. (1976) Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: Evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology 47:2127. [aNRW]CrossRefGoogle ScholarPubMed
Fibiger, H. C. & Lloyd, K. G. (1984) The neurobiological substrates of tardive dyskinesia: The GABA hypothesis. Trends in Neuroscience 7:462–64. [HCF]CrossRefGoogle Scholar
Fibiger, H. C. & Phillips, A. G. (1986) Reward, motivation and cognition: Psychobiology of meso-telencephalic dopamine systems. In: Handbook of physiology: The nervous system. Vol. 4: Intrinsic regulatory systems of the brain, ed. Bloom, F. E. & Geiger, S. R.. American Physiological Society. [HCF]Google Scholar
Fibiger, H. C. & Phillips, A. G.(1987) Role of catecholamine transmitters in brain reward systems:Implications for the neurobiology of affect. In: Brain reward systems and abuse, ed. Engel, J. & Oreland, L.. Raven Press. [HCF]Google Scholar
Flowers, K. A. & Robertson, C. (1985) The effect of Parkinson's disease on the ability to maintain a mental set. Journal of Neurology, Neurosurgery and Psychiatry 48:517–29. [aNRS]CrossRefGoogle ScholarPubMed
Fonnum, F., Storm-Mathisen, J. & Divac, I. (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6:863–73. [aNRS]CrossRefGoogle ScholarPubMed
Fouriezos, G.Hansson, P. A. & Wise, R. A. (1978) Decreased intracranial self-stimulation after neuroleptics: Mediation by reduced reward, not performance debilitation. Journal of Comparative Physiology and Psychology 92:659–69. [aNRS]Google Scholar
Franks, R. D., Alder, L. E., Waldo, M. C., Alport, J. & Freedman, R. (1983) Neurophysiological studies of sensory gating in mania: Comparison with schizophrenia. Biological Psychiatry 18:9891005. [AEK]Google ScholarPubMed
Franzen, G. & Ingvar, D. H. (1975) Abnormal distribution of cerebral activity in chronic schizophrenia. Journal of Psychiatric Research 12:199214. [aNRS]CrossRefGoogle ScholarPubMed
Friedhoff, A. J. (1986) A dopamine dependent restitutive system for the maintenance of mental normalcy. Annals of the New York Academy of Sciences 463:4752. [rNRS]CrossRefGoogle ScholarPubMed
Friedhoff, A. J. & Van Winkle, E. (1962) Isolation and characterization of a compound from the urine of schizophrenics. Nature 194:897–99. [aNRS]CrossRefGoogle Scholar
Galey, D., Durkin, T., Sitakis, G., Kempf, E. & Jaffard, R. (1985) Facilitation of spontaneous and learned spatial behaviours following 6- hydroxydopamine lesions of the lateral septum: A cholinergic hypothesis. Brain Research 340:171–74. [JAG]CrossRefGoogle ScholarPubMed
Gallagher, D. W., Pert, A. & Bunney, W. E. (1978) Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273:309–12. [aNRS]CrossRefGoogle Scholar
Gardner, E. L., Hirshhorn, I., Seeger, T. F., Weiss, M. & Makman, M. H. (1980) Comparative effects of lithium on drug-induced and lesion-induced dopaminergic supersensitivity. Society of Neuroscience Abstracts 6:546. [aNRS]Google Scholar
Gelissen, M. & Cools, A. (1986) The interrelationship between superior colliculus and substantia nigra pars reticulata in programming movements of cats. Behavioural Brain Research 21:8593. [ARC]CrossRefGoogle ScholarPubMed
Gerfen, C. R. (1984) The neostriatal mosaic: Cornpartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–64. [aNRS]CrossRefGoogle ScholarPubMed
Ginton, A., Urea, G. & Lubow, R. E. (1975) The effects of preexposure to a non-attended stimulus on subsequent learning: Latent inhibition in adults. Bulletin of the Psychonomic Society 5:58. [JAG]CrossRefGoogle Scholar
Glowinski, J., Tassin, J. P. & Thierry, A. M. (1984) The mesocorticoprefrontal dopaminergic neurons. Trends in Neuroscience 7:415–18. [GEJ, JPT]CrossRefGoogle Scholar
Gold, L. H., Swerdlow, N. R. & Koob, G. F. (1986) Mesolimbic dopamine lesions block the unconditioned and conditioned motor effects of amphetamine. Neuroscience Abstracts 12:1137. [rNRS]Google Scholar
Golden, C. J., Graber, B., Coffman, J., Berg, R. A., Newlin, D. B. & Bloch, S. (1981) Structural brain deficits in schizophrenia. Archives of General Psychiatry. 38:1014–17. [AEK]CrossRefGoogle ScholarPubMed
Goldman, P. S. & Nauta, W. J. H. (1977) An intricately patterned prefrontalcaudate projection in the rhesus monkey. Journal of Comparative Neurology 171:369–86. [AEK]CrossRefGoogle Scholar
Goodwin, F. K. & Bunney, W. E. Jr, (1973) A psychobiological approach to affective illness. Psychiatric Annals 3:1953. [aNRS]CrossRefGoogle Scholar
Goodwin, F. K., Murphy, D. L., Brodie, H. K. H. & Bunney, W. E. (1970) L-Dopa, catecholamines, and behavior: A clinical and biochemical study in depressed patients. Biological Psychiatry 2:341–66. [aNRS]Google ScholarPubMed
Grace, A. A. (1983) Nigral dopamine neurons: Identification, characterization, and effects of autoreceptor stimulation. Ph.D. dissertation, Yale University. [AAG]Google Scholar
Grace, A. A. & Bunney, B. S. (1985) Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Research 333:271–84. [AAG]CrossRefGoogle ScholarPubMed
Grace, A. A. & Bunney, B. S. (1986) Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: Analysis using in vivo intracellular recording. Journal of Pharmacology and Experimental Therapeutics 238:10921100. [AAG]Google ScholarPubMed
Gray, J. A. (1972) The structure of the emotions and the limbic system. In: Physiology, emotion and psychosomatic illness, ed. Porter, R. & Knight, J.. Amsterdam: Association of Scientific Publishers. [JAG]Google Scholar
Gray, J. A. (1975) Elements of a two-process theory of learning. Academic Press. [JAG]Google Scholar
Gray, J. A. (1982a) The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford University Press. [JAG]Google Scholar
Gray, J. A. (1982b) Préicis of The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behavioral and Brain Sciences 5:469–84. [JAG]CrossRefGoogle Scholar
Gray, J. A. (1985) Issues in the neuropsychology of anxiety. In: Anxiety and the anxiety disorders, ed. Tuma, A. H. & Maser, J. D.. Erlbaum. [JAG]Google Scholar
Gray, J. A. (1987) The psychology of fear and stress, 2nd ed.Cambridge University Press. [JAG]Google Scholar
Gray, J. A. (in press) The neuropsychology of emotion and personality. In: Proceedings of symposium on cognitive neurochemistry, Harlow, Essex, 1986, ed. Iversen, S. D. & Stahl, S. M.. Oxford University Press. [JAC]Google Scholar
Gray, J. A. & Smith, P. T. (1969) An arousal-decision model for partial reinforcement and discrimination learning. In: Animal discrimination learning, ed. Gilbert, R. & Sutherland, N. S.. Academic Press. [JAG]Google Scholar
Green, A. R., Heal, D. J. & Grahame-Smith, D. G. (1977) Further observations on the effect of repeated electroconvulsive shock on the behavioral responses of rats produced by increase in the functional activity of brain 5-hydroxytryptamine and dopamine. Psychopharmacology 52:195200. [aNRS]CrossRefGoogle ScholarPubMed
Gregoire, F., Brauman, H., Debuck, R. & Corvilain, J. (1977) Hormone release in depressed patients, before and after recovery. Psychoneuroendocrinology 2:303–11. [aNRS]CrossRefGoogle ScholarPubMed
Groenewegen, H. J. & Russchen, F. T. (1984) Organization of the efferent projections of the immunohistochemical study in the cat. Journal of Comparative Neurology 223:347–67. [GFA]CrossRefGoogle ScholarPubMed
Grof, E., Brown, G. M. & Grof, P. (1983) Neuroendocrine strategies in affective disorders. Progress in Seuropsychopharmacology and Biological Psychology 7:557–82. [aNRS]Google ScholarPubMed
Groves, P. M. (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Research Reviews 5:109–32. [aNRS, JHF, ELG, AAG]CrossRefGoogle Scholar
Growden, J. H. (1982) Medical treatment of extrapyramidal diseases. In: Update III: Harrison's principles of internal medicine, ed. lsselbacher, K. J.. McGraw-Hill. [aNRS]Google Scholar
Gruenthal, M. (1980) The effect of lithium administration on apomorphineinduced rotation following unilateral destruction of the nigrostriatal pathway in the rat. Society of Neurosdence Abstracts 6:546. [aNRS]Google Scholar
Gruzelier, J. H. & Venables, P. H. (1972) Skin conductance orienting activity in a heterogeneous sample of schizophrenics. Journal of Nervous and Mental Disease 155:277–87. [rNRS]CrossRefGoogle Scholar
Cunne, L. M., Anggard, E. & Jonsson, L. E. (1972) Clinical trials with amphetamine-blocking drugs. Psychiatric Neurology and Neurobiology 75:225–26. [aNRS]Google Scholar
Haber, S. N. & Watson, S. J. (1985) The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain Neurosdence 14:1011–24. [aNRS]CrossRefGoogle ScholarPubMed
Halaris, A., Belendiuk, K. & Freedom, D. (1975) Antidepressant drugs affect brain dopamine. Biochemical Pharmacology 24:1896–98. [arNRS]CrossRefGoogle Scholar
Hall, M. D., Jenner, P., Kelly, E. & Marsden, C. D. (1983) Differential anatomical location of [3H]-N,n-propylnorapomorphine and [3H] spiperone binding sites in the striatum and substantia nigra of the rat. British Journal of Pharmacology 79:599610. [PMB]CrossRefGoogle Scholar
Heath, R. G. (1962) Common characteristics of epilepsy and schizophrenia: Clinical observation and depth electrode studies. American Journal of Psychiatry 118:1013–26. [aNRS]CrossRefGoogle ScholarPubMed
Heimer, L., Alheid, G. F., & Zaborszky, L. (1985) Basal ganglia. In: The rat nervous system, vol. 1: Forebrain and midbrain, ed. Paxinos, G.. Academic Press. [GFA]Google Scholar
Heimer, L., Switzer, R. D. & Van Hoesen, G. W. (1982) Ventral striatum and ventral pallidum: Components of the motor system?. Trends in Neurosdence 5:8387. [aNRS]CrossRefGoogle Scholar
Heimer, L. & Wilson, R. D. (1975) The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Colgi centennial symposium proceedings, ed. Santini, M.. Raven Press. [aNRS]Google Scholar
Herman, J. P., Guilloneau, D., Dantzer, R., Scatton, B., Semerdjian-Rouquier, L. & Le Moal, M. (1982) Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshock on dopamine turnover in cortical and limbic areas of the rat. Life Sdences 30:2207–14. [GEJ]CrossRefGoogle ScholarPubMed
Herrling, P. L. & Hull, C. D. (1984) Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons Brain Research 192:441–62. [rNRS]CrossRefGoogle Scholar
Hersh, S. M. & White, E. L. (1981) Thalamocortical synapses with corticothalamic projection neurons in mouse sml cortex: Electron microscopic demonstration of a monosynaptic feedback loop. Neurosdence Letters 24:207–10. [aNRS]CrossRefGoogle Scholar
Herve, D., Studler, J. M., Blanc, G., Glowinski, J., Holcomb, H. H., Sternberg, A. E. & Heninger, G. R. (1983) Effects of electroconvulsive therapy on mood, parkinsonism and tardive dyskinesia in a depressed patient: ECT and dopamine systems. Biological Psychiatry 18:865–73. [rNRS]Google Scholar
Herve, D., Studler, J. M., Blanc, G., Glowinski, J., & Tassin, J. (1986) Partial protection by desmethylimipramine of the mesocortical dopamine neurones from the neurotoxic effect of 6-hydroxydopamine injected in ventral mesencephalic tegmentum. The role of noradrenergic innervation. Brain Research 383:4753. [rNRS]CrossRefGoogle ScholarPubMed
Hoebel, B. G., Monaco, A. P., Hernandez, L., Aulisi, E. F., Stanley, B. G. & Lenard, L. (1983) Self-injection of amphetamine directly into the brain. Psychopharmacology 81:158–63. [AEK]CrossRefGoogle ScholarPubMed
Hokfelt, T., Eferitt, B. J., Theodorsson-Norheim, E. & Goldstein, M. (1984) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. Journal of Comparative Neurology 222:543–59. [PWK]CrossRefGoogle Scholar
Hokfelt, T., Skirboll, L., Rehfeld, J., Goldstein, M., Markey, M. & Dann, O. (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunocytochemistry combined with retrograde tracing. Neurosdence 5:20932124. [JHF]CrossRefGoogle ScholarPubMed
Holcomb, H. H.Stemberg, A. E. & Heninger, G. R. (1983) Effects of electroconvulsive therapy on mood, parkinsonism and tardive dyskinesia in a depressed patient: ECT and dopamine systems. Biological Psychiatry 18:865–73. [arNRS]Google Scholar
Hollister, L. E. (1978) Psychiatric disorders. In: Clinical pharmacology: Basic prindples in therapeutics, ed. Melmon, K. L. & Morelli, H. F.. MacMillan. [aNRS]Google Scholar
Hommer, D. W., Pickar, D., Roy, A., Ninan, P., Boronow, J. & Paul, S. (1984) The effects of ceruletide in schizophrenia. Archives of General Psychiatry 41:617–19. [rNRS]CrossRefGoogle ScholarPubMed
Horn, A. S., & Snyder, S. H. (1971) Chlorpromazine and dopamine: Conformational similarities that correlate with the antischizophrenic activity of phenothiazine drugs. Proceedings of the National Academy of Sdence, [JRS]CrossRefGoogle Scholar
Hornykiewicz, O. (1963) Die topische localisation das verhalten von noradrenalin und dopamin (3-hydroxytyramin) in der substantia nigra des normalen und Parkinson-kranken menschen. Wiener Klinische Wochenschrift 57:309–12. [aNRS]Google Scholar
Hornykiewicz, O. (1982) Brain catecholamines in schizophrenia - a good case for noradrenaline. Nature 299:484–86. [PMB]CrossRefGoogle ScholarPubMed
Ingvar, D. H. & Franzen, G. (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet 2:1481–85. [aNRS]Google ScholarPubMed
Jacobs, B. L., Trulson, M. E. & Stem, W. C. (1977) Behavioral effects of LSD in the cat: Proposal of an animal behavior model for studying the actions of hallucinogenic drugs. Brain Research 132:301–14. [aNRS]CrossRefGoogle ScholarPubMed
Jaeckle, R. S. & Nasrallah, H. A. (1985) Major depression and carbon monoxide-induced parkinsonism: Diagnosis, computerized axial tomography, and response to L-dopa. Journal of Nervous and Mental Disorders 173:503–8. [aNRS]CrossRefGoogle ScholarPubMed
Janowsky, D. S., Davis, J. M., El-Yousef, M. K. & Sekerke, H. J. (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 1:632–35. [aNRS]CrossRefGoogle Scholar
Jaspers, R., Schwarz, M., Sontag, K.-H. & Cools, A. (1984) Caudate nucleus and programming behaviour in cats: Role of dopamine in switching motor patterns. Behavioural Brain Research 14:1728. [ARC]CrossRefGoogle ScholarPubMed
Javoy-Agid, F. & Agid, Y. (1980) Is the mesocortical dopaminergic system involved in Parkinson's disease? Neurology 30:1326–30. [aNRS]CrossRefGoogle Scholar
Jimerson, D. C. & Post, R. M. (1984) Psychomotor stimulants and dopamine agonists in depression. In: Neurobiology of mood disorders, ed. Post, R. M. & Ballenger, J. C.. Williams and Wilkins. [arNRS]Google Scholar
Jones, D. L. & Mogenson, G. J. (1980a) Nucleus accumbens to globus pallidus GABA projection: Electrophysiological and iontophoretic investigations. Brain Research 188:93105. [arNRS]CrossRefGoogle ScholarPubMed
Jones, D. L. & Mogenson, G. J. (1980b) Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity. American Journal of Physiology 238:R6369. [rNRS]Google ScholarPubMed
Jones, E. G. & Powell, T. P. S. (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793820. [aNRS][CrossRefGoogle ScholarPubMed
John, E. R. (1986) Personal communication. [AW]Google Scholar
Joyce, E. M., Koob, G. F., Strecker, R., Iversen, S. D. & Bloom, F. E. (1981) The behavioral effects of enkephalin analogues injected into the ventral tegmental area and globus pallidus. Brain Research 221:359–70. [PWK]CrossRefGoogle ScholarPubMed
Judd, L. L., Risch, S. C., Parker, D. C., Janowsky, D., Segal, A. & Huey, L. (1982) Prolactin and growth hormone blunted in depression. New Research Abstracts of the APA Annual Meeting, Toronto. [aNRS]Google Scholar
Juhl, R. P., Tsuang, M. T. & Perry, P. J. (1977) Concomitant administration of haloperidol and lithium carbonate in acute mania. Diseases of the Nervous System 38:675. [aNRS]Google ScholarPubMed
Kalivas, P. W. (1985) Interactions between neuropeptides and dopamine neurons in the ventromedial mesencephalon. Neuroscience and Biobehavioral Reviews 9:573–87. [PWK]CrossRefGoogle ScholarPubMed
Kalivas, P. W., Nemeroff, C. B. & Prange, A. J. Jr, (1984) Neurotensin microinjection into the nucleus accumbens antagonizes dopamineinduced increase in locomotion and rearing. Neuroscience 1:919–30. [PWK]CrossRefGoogle Scholar
Kehne, J. H. & Sorenson, C. A. (1978) The effects of pimozide and phenoxybenzamine pretreatment on amphetamine and apomorphine potentiation of the acoustic startle response in rats. Psychopharmacology 58:137–44. [aNRS]CrossRefGoogle ScholarPubMed
Kelley, A. E. & Domesick, V. B. (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–35. [aNRS, JAG]CrossRefGoogle Scholar
Kelley, A. E., Domesick, V. B. & Nauta, W. J. H. (1982) The amygdalostriatal projection in the rat – an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–30. [aNRS, AEK]CrossRefGoogle ScholarPubMed
Kelley, A. E. & Stinus, L. (1985) Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with L-dopa. Behavioral Neuroscience 99:531–45. [arNRS, AEK]CrossRefGoogle ScholarPubMed
Kelley, A. E., Stinus, L. & Iversen, S. D. (1980) Interactions between D-alamet-enkephalin, A10 dopaminergic neurones, and spontaneous behavior in the rat. Behavioral Brain Research 1:324. [aNRS]CrossRefGoogle ScholarPubMed
Kelly, P. H. & Iversen, S. D. (1976) Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: Abolition of psychostimulant-induced locomotor activity in rats. European Journal of Pharmacology 40:4556. [aNRS]CrossRefGoogle Scholar
Kelly, P. H.Seviour, P. W., & Iversen, S. P. (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens, septi, and corpus striatum. Brain Research 94:507–22. [aNRS, AEK]CrossRefGoogle ScholarPubMed
Kety, S. S. (1970) Current biochemical research in schizophrenia. In: Psychopathology of schizophrenia, ed. Hoch, P. A. & Zubin, J.. Basic Books. [aNRS]Google Scholar
Kilpatrick, I.C., Collingridge, C. & Starr, M. (1982) Evidence for the participation of nigrotectal gammaaminobutyrate containing neurons in striatal and nigral-derived circling in the rat. Neuroscience 7:207–22. [AAC]CrossRefGoogle ScholarPubMed
Kim, J. S., Hassler, R., Haug, P. & Paik, K. S. (1977) Effect of frontal cortex ablation on striatal glutamic acid level in rat. Brain Research 132:370–74. [aNRS]CrossRefGoogle ScholarPubMed
Kim, J. S. & Kornhuber, H. H. (1982) The glutamate theory in schizophrenia: Clinical and experimental evidence. In: Psychobiology of schizophrenia, ed. Namba, M. & Kaiya, H.. Pergamon. [PMB]Google Scholar
King, R. (1985) Motivational diversity and mesolimbic dopamine: An hypothesis concerning temperament. In: Emotion: Theory, research and experience, vol. 3, Biological foundations of emotion, ed. Plutchick, R.. Academic Press. [arNRS]Google Scholar
King, R. J., Mefford, I. N., Wang, C., Murchison, A., Caligari, E. J. & Berger, P. A. (1986) CSF dopamine levels correlate with extroversion in depressed patients. Psychological Research 19:305–10. [rNRS]Google ScholarPubMed
Kita, H., Kita, T. & Kitai, S. T. (1985) Regenerative potentials in rat neostriatal neurons in an in vitro slice preparation. Experimental Brain Research 60:6370. [AAG]Google Scholar
Kitai, S. T., Iuginiori, M. & Kocsis, J. D. (1976) Excitatory nature of dopamine in the nigro-caudate pathway. Experimental Brain Research 24:351–63. [JHF]CrossRefGoogle ScholarPubMed
Kitai, S. T., Sugimori, M. & Kocsis, J. D. (1976) Excitatory nature of dopamine in the nigro-caudate pathway. Experimental Brain Research 24:351–63. [rNRS]CrossRefGoogle ScholarPubMed
Kleinman, J. E. (1986) Postmortem neurochemistry studies in schizophrenia. In: The neurology of schizophrenia, ed. Nasrallah, H. & Weinberger, D. R.. Elsevier. [GEJ]Google Scholar
Klerman, G. L. & Cole, J. O. (1965) Clinical pharmacology of imipramine and related antidepressant compounds. Pharmacology Review 17:101–41. [aNRS]Google ScholarPubMed
Knapp, S., Mandell, A. J. & Geyer, M. A. (1974) Effects of amphetamine on regional tryptophan hydroxylase activity and synaptosomal conversion of tryptophan to 5-hydroxytryptamine in rat brain. Journal of Pharmacology and Experimental Therapy 189:676–89. [aNRS]Google ScholarPubMed
Koda, L. Y. & Gibb, J. W. (1971) The effect of repeated large doses of methamphetamine on adrenal and brain tyrosine hydroxylase. Pharmacologist 13:253. [aNRS]Google Scholar
Kolb, B. & Whishaw, I. Q. (1983) Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurologic patients. Journal of Nervous and Mental Disease 171:435–43. [BK]CrossRefGoogle ScholarPubMed
Koob, G. F., Balcom, G. J. & Meyerhoff, J. L. (1976) Increases in intracranial self-stimulation in the posterior hypothalamus following unilateral lesions in the locus coeruleus. Brain Research 101:554–60. [rNRS]CrossRefGoogle ScholarPubMed
Koob, G. F., Riley, S. J., Smith, S. C. & Robbins, T. W. (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity and amphetamine anorexia in the rat. Journal of Comparative and Physiological Psychology 92:917–27. [AEK]CrossRefGoogle ScholarPubMed
Kornetsky, C. (1976) Hyporesponsivity of chronic schizophrenic patients to dextroamphetamine. Archives of General Psychiatry 33:1425–28. [aNRS]CrossRefGoogle ScholarPubMed
Kornetsky, C. & Esposito, R. U. (1979) Euphorigenic drugs: Effects on reward pathways of the brain. Federal Proceedings 38:2473–76. [aNRS]Google ScholarPubMed
Kozlowski, M. R., Neve, K. A., Grishman, J. E. & Marshall, J. F. (1983) Chronic lithium administration alters behavioral recovery from nigrostriatal injury: Effects on neostriatal (3H) spiroperidol binding sites. Brain Research 267:301–11. [aNRS]CrossRefGoogle ScholarPubMed
Kupfer, D. J., Himmelhoch, J. M., Swartzburg, M., Anderson, C., Byck, R. & Detre, P. (1972) Hypersomnia in manic depressive disease. Disorders of the Nervous System 33:720–24. [AEK]Google ScholarPubMed
Lavielle, S., Tassin, J. P., Thierry, A. M., Blanc, G., Hervé, D., Barthélémy, C. & Glowinski, J. (1979) Blockade by benzodiazepines of the selective high increase in DA turnover induced by stress in mesocortical DA neurons of the rat. Brain Research 168:585–94. [JPT]CrossRefGoogle ScholarPubMed
Le Dourarin, C., Oblin, A., Fage, D. & Scatton, B. (1983) Influence of lithium on biochemical manifestations of striatal dopamine target cell supersensitivity induced by prolonged haloperidol treatment. European Journal of Pharmacology 93:5562. [aNRS]CrossRefGoogle Scholar
Lee, T. & Seeman, P. (1977) Dopamine receptors in normal and schizophrenic human brains. Society of Neuroscience Abstracts 3:443. [arNRS]Google Scholar
Lee, T., Seeman, P., Tourellotte, W. W., Farley, I. J. & Hornykeiwicz, O. (1978) Binding of 3-H-neuroleptics and 3-H-apomorphine in schizophrenic brains. Nature 274:897900. [arNRS]CrossRefGoogle Scholar
Leith, N. J. & Barrett, R. J. (1980) Effects of chronic amphetamine or reserpine on self-stimulation responding: Animal model of depression? Psychopharmacology 72:915. [aNRS]CrossRefGoogle ScholarPubMed
Le Moal, M., Cardo, B. & Stinus, L. (1969) Influence of ventral mesencephalic lesions on various spontaneous and conditional behaviours in the rat. Physiology b Behaviour 4:567–74. [JPT]CrossRefGoogle Scholar
Leonard, C. M. (1969) The prefrontal cortex of the rat. Brain Research 12:321–43. [GEJ]CrossRefGoogle ScholarPubMed
Levin, S. (1984a) Frontal lobe dysfunctions in schizophrenia: I. Eye movement impairments. Journal of Psychiatric Research 18:2755. [arNRS]CrossRefGoogle ScholarPubMed
Levin, S. (1984b) Frontal lobe dysfunction in schizophrenia II: Impairments of psychological brain functions. Journal of Psychiatric Research 18:5772. [AEK]CrossRefGoogle ScholarPubMed
Llinas, R. & Yarom, Y. (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. Journal of Physiology (London) 315:569–84. [AAG]CrossRefGoogle ScholarPubMed
Loranger, A. W. (1981) Genetic independence of manic-depression and schizophrenia. Acta Psychiatrica Scandinavica 63:444–52. [AEK]CrossRefGoogle ScholarPubMed
Lotstra, F., Verbanck, P., Mendlewicz, J. & Vanderhaeghen, J. (1984) No evidence of antipsychotic effect of caerulein in schizophrenic patients free of neuroleptics – a double-blind crossover study. Biological Psychiatry 19:877–82. [rNRS]Google Scholar
Louilot, A., Simon, H., Taghzouti, K. & Le Moal, M. (1985) Modulation of dopaminergic activity in the nucleus accumbens following facilitation or blockade of the dopaminergic transmission in the amygdala: A study by in vivo differential pulse voltammetry. Brain Research 346:141–45. [JPT]CrossRefGoogle ScholarPubMed
Lubow, R. E. (1973) Latent inhibition. Psychological Bulletin 79:398407. [JAG]CrossRefGoogle ScholarPubMed
Lyon, M & Robbins, T. (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects. In: Current developments in psychopharmacology. Vol. 2. Spectrum. [aNRS]Google Scholar
Mackay, A. V. P. (1982) Increased brain dopamine and dopamine receptors in schizophrenia. Archives of General Psychiatry 39:991–97. [arNRS]CrossRefGoogle ScholarPubMed
Maier, S. F. & Seligman, M. E. P. (1976) Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General 105:346. [aNRS]CrossRefGoogle Scholar
Major, L., Murphy, D. L. & Lipper, S. (1979) Effects of clorgyline and pargyline on deaminated metabolites of norepinephrine, dopamine and serotonin in human cerebrospinal fluid. Journal of Neurochemistry 32:229–31. [aNRS]CrossRefGoogle ScholarPubMed
Man in ‘T’ Veld, A. J., Boomsma, F., Moleman, P. & Schalekamp, M. A. D. H. (1987) Congenital dopamine-beta-hydroxylase deficiency: A novel orthostatic syndrome. Lancet 1:183–87. [rNRS]CrossRefGoogle Scholar
Marsden, C. D. (1980) The enigma of the basal ganglia and movement. Trends in Neurosciences 3:284–87. [GFA]CrossRefGoogle Scholar
Marsden, C. D. (1984) Which motor disorder in Parkinson's disease indicates the true motor function of the basal ganglia? In: Functions of the basal ganglia, ed. Evarts, E.. Ciba Foundation Symposium 107. [aNRS, AAG]Google ScholarPubMed
Martin-Iverson, M. T., Leclere, J. F. & Fibiger, H. C. (1983) Cholinergicdopaminergic interactions and the mechanisms of action of antidepressants. European Journal of Pharmacology 94:193201. [aNRS]CrossRefGoogle ScholarPubMed
Mattes, J. A., Horn, W., Rochford, J. M. & Orlosky, M. (1985) Ceruletide for schizophrenia: A double-blind study. Biological Psychiatry 20:533–38. [rNRS]CrossRefGoogle ScholarPubMed
Mattes, J. A. & Rochford, J. M. (1985) A high dose double-blind study of ceruletide in the treatment of schizophrenia. American Journal of Psychiatry 142:1482–84. [rNRS]Google ScholarPubMed
Matthysse, S. (1973) Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Federation Proceedings 32:200205. [GFA]Google Scholar
Mayeux, R., Stern, Y., Rosen, J. & Leventhal, J. (1981) Depression, intellectual impairment, and Parkinson's disease. Neurology 31:645–50. [aNRS]CrossRefGoogle Scholar
McCabe, M. S., Fowler, R. C., Cadoret, R. J. & Winokur, G. (1972) Symptom differences in schizophrenia with good and poor prognosis. American Journal of Psychiatry 128:1239–43. [AEK]CrossRefGoogle ScholarPubMed
McGeer, P. L. & McGeer, E. G. (1980) Chemistry of mood and emotion. Annual Review of Psychology 31:273307 [GFA]CrossRefGoogle ScholarPubMed
McGeer, E. G., Staines, W. A. & McGeer, P. L. (1984) Neurotransmitters ir the basal ganglia. Canadian Journal of Neurological Science 11:8999. [AW]CrossRefGoogle Scholar
Mclntyre, D. C. & Racine, R. J. (1986) Kindling mechanisms: Current progress on an experimental epilepsy model. Progress in Neurobiology 27:112. [ELG]CrossRefGoogle Scholar
Mclntyre, I. M., Kuhn, C., Demitriou, S., Fucek, F. R. & Stanley, M. (1983) Modulating role of lithium on dopamine turnover, prolactin release, and behavioral supersensitivity following haloperidol and reserpine. Psychopharmacology 81:150–54. [aNRS]CrossRefGoogle Scholar
McLennan, H. & York, D. H. (1967) The action of dopamine on neurons of the caudate nucleus. Journal of Physiology-London 189:393402. [rNRS]CrossRefGoogle ScholarPubMed
Meltzer, H. Y. (1979) Biology of schizophrenia subtypes: A review and proposal for method of study. Schizophrenia Bulletin 5:460–78. [AW]CrossRefGoogle ScholarPubMed
Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basatis (substantia innominata), and hypothalamus in the rhesus monkey. Journal of Comparative Neurology 214:170–97. [aNRS]CrossRefGoogle ScholarPubMed
Mindham, R. H. S. (1970) Psychiatric symptoms in parkinsonism. Journal of Neurological Psychiatry 33:188–91. [rNRS]CrossRefGoogle ScholarPubMed
Mogenson, G. J., Jones, D. L. & Yim, C. Y. (1980) From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology 14:6997. [PMB]CrossRefGoogle ScholarPubMed
Mogenson, G. J. & Nielson, M. A. (1982) Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brai Research Bulletin 11:309–14. [rNRS]CrossRefGoogle Scholar
Mogenson, G. J., Swanson, L. W. & Wu, M. (1983) Neural projections fron the nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: An anatomical and electrophysiological investigation in the rat. Journal of Neuroscience Research 3:189202. [arNRS, ARC]CrossRefGoogle Scholar
Morihisa, J. M. & McAnulty, G. B. (1985) Structure and function: Brain electrical activity mapping and computerized tomography of schizophrenia. Biological Psychiatry 20:319. [GEJ]CrossRefGoogle ScholarPubMed
Morrison, J. H. & Magistretti, P. J. (1983) Monoamines and peptides in cerebral cortex: Contrasting principles of cortical organization. Trends in Neuroscience 6:146–51. [aNRS]CrossRefGoogle Scholar
Mowrer, O. H. (1960) Learning theory and behavior. Wiley. [JAG]CrossRefGoogle Scholar
Mueser, K. T. & Dysken, M. W. (1983) Narcotic antagonists in schizophrenia: A methodological review. Schizophrenia Bulletin 9:213–25. [PWK]CrossRefGoogle Scholar
Müller, H. F. (1985) Prefrontal cortex dysfunction as a common factor in psychosis. Acta Psychiatrica Scandinavica 71:431–40. [aNRS]CrossRefGoogle ScholarPubMed
Murphy, D. L., Brodie, H. K. H., Goodwin, F. K. & Bunney, W. E. Jr, (1971) Regular induction of hypomania by L-DOPA in “bipolar” manicdepressive patients. Nature 299:135. [aNRS]CrossRefGoogle Scholar
Murphy, D. L., Goodwin, F. K. & Bunney, W. E. Jr (1975) The psychobiology of mania. In: American handbook of psychiatry, (Vol. 6 D), ed. Hamburg, D. & Brodie, H. K. H.. Basic Books. [aNRS]Google Scholar
Nauta, W. J. H. (1971) The problem of the frontal lobe: A reinterpretation. Journal of Psychiatric Research 8:167–87. [arNRS]CrossRefGoogle ScholarPubMed
Circuitous connections linking cerebral cortex, limbic system, and corpus striatum. In: The limbic system: Functional organization and clinical disorders, ed. Foane, B. K. & Livingston, K. E.. Raven Press. [AW]Google Scholar
Nauta, W. J. H., Smith, G. P., Domesick, V. B. & Faull, R. L. M. (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385401. [aNRS]CrossRefGoogle ScholarPubMed
Nelson, J. C. & Charney, D. S. (1983) The symptoms of major depressive illness. American Journal of Psychiatry 138:113. [aNRS]Google Scholar
Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Eklund, K., Kilts, C. D., Loosen, P. T. & Vale, W. (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–43. [aNRS]CrossRefGoogle ScholarPubMed
Nurse, B., Russell, V. A. & Taljaard, J. J. F. (1985) Effect of chronic desipramine treatment on adrenoceptor modulation of [3H] dopamine release from rat nucleus aecumbens slices. Brain Research 334:235–42. [arNRS, PMB]CrossRefGoogle ScholarPubMed
Oberg, R. G. E. & Divac, I. (1981) The basal ganglia and the control of movement. Trends in Neurosciences 4:122–24. [GFA]CrossRefGoogle Scholar
Pandya, D. N. & Kuypers, H. G. J. M. (1969) Cortico-cortical connections in the rhesus monkey. Brain Research 13:1336. [aNRS]CrossRefGoogle ScholarPubMed
Parant, R. (1881) Ann. med-Psychol., quoted by Mjones, H. (1949) In: Paralysis agitans. (Acta psychiat. neurol., suppl. 54Munksgaard, Copenhagen. [rNRS]Google Scholar
Pardes, H. (1986) Neuroscience and psychiatry: Marriage or coexistence? The American Journal of Psychiatry 143:1205–12. [MLM]Google ScholarPubMed
Park, M. R., Lighthall, J. W. & Kitai, S. T. (1980) Recurrent inhibition in the rat neostriatum. Brain Research 194:359–69. [AAG]CrossRefGoogle ScholarPubMed
Patrick, H. I. & Levy, D. M. (1922) Parkinson's disease: A clinical study of 146 cases. Archives of Neurological Psychiatry (Chicago) 7:711–20. [rNRS]CrossRefGoogle Scholar
Penney, J. B. & Young, A. B. (1981) GABA as the pallidothalamic neurotransmitter: Implications for basal ganglia function. Brain Research 207:195–99. [aNRS]CrossRefGoogle ScholarPubMed
Penney, J. B. & Young, A. B. (1983) Speculations on the functional anatomy of basal ganglia disorders. Annual Review of Neuroscience 6:7394. [arNRS, PmB]CrossRefGoogle ScholarPubMed
Penney, J. B. & Young, A. B. (1986) Striatal inhomogeneities and basal ganglia function. Movement Disorders 1:315. [ARC]CrossRefGoogle ScholarPubMed
Perez-Rincon, H., Alvarez-Rueda, J. M. & de la Vega, M. A. (1981) Nomifensine in the treatment of depression: A long term controlled trial. Current Therapeutic Research-Clinical Experimental 29:327–34. r[NRS]Google Scholar
Perry, T. L., Hansen, S. & Kloster, M. (1973) Huntington's chorea: Deficiency of aminobutyric acid in brain. New England Journal of Medicine 288:337–42. [JRS]CrossRefGoogle ScholarPubMed
Pert, A. & Bunney, W. E. Jr (1982) Chronic lithium modulates receptor sensitivity. In: Basic mechanisms in the action of lithium, ed. Emrieh, H. M., Aldenhoff, J. B. & Lux, H. D.. Excerpta Medica. [arNRS]Google Scholar
Pert, A., Rosenblatt, J. E., Sivit, C., Pert, C. B. & Bunney, W. E. (1978) Long term treatment with lithium prevents the development of dopamine receptor supersensitivity. Science 201:171–73. [aNRS]CrossRefGoogle ScholarPubMed
Pert, A. & Sivit, C. (1977) Neuroanatomical focus for morphine and enkephalin-induced hypermotility. Nature 265:645–47. [PWK]CrossRefGoogle ScholarPubMed
Peselow, E., Angrist, B., Sudilovsky, A., Corwin, J., Siekierski, J., Trent, F. & Rotrosen, J. (1987) Double blind controlled trials of cholecystokinin octapeptide in neuroleptic-refractory schizophrenia. Psychopharmacology 91:8084. [rNRS]CrossRefGoogle ScholarPubMed
Petit, H. O., Ettenberg, A., Bloom, F. E. & Koob, G. F. (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–73. [AEK]CrossRefGoogle Scholar
Phillips, A. G. (1984) Brain reward circuitry: A case for separate systems. Brain Research Bulletin 12:195201. [AP]CrossRefGoogle ScholarPubMed
Pitman, R. K., Kolb, B., Orr, S. P. & Singh, M. M. (1987) Ethological study of facial behavior in nonparanoid and paranoid schizophrenics. American Journal of Psychiatry 144:99102. [BK]Google Scholar
Pittman, K. J., Jakubovic, A. & Ribiger, H. C. (1984) The effects of chronic lithium on behavioral and biochemical indices of dopamine receptor supersensitivity in the rat. Psychopharmacology 82:371–77. [aNRS]CrossRefGoogle ScholarPubMed
Poncelet, M., Dangoumau, L., Soubrié, P. & Simon, P. (in press) Effects of neuroleptic drugs, clonidine and lithium on the expression of conditioned behavioral excitation in rats. Psychopharmacology. [PS]Google Scholar
Pope, H. G. Jr, & Lipinski, J. F. (1978) Diagnosis in schizophrenia and manic-depressive illness. Archives of General Psychiatry 35:811–28. [aNRS, AEK]CrossRefGoogle ScholarPubMed
Porsolt, R. D. (1981) Behavioural despair. In: Antidepressants: Neurochemical, behavioural and clinical perspectives, ed. Enna, S. J., Malick, J. B. & Richelson, E.. Raven Press. [arNRS]Google Scholar
Porsolt, R. D., Anton, G., Blavet, N. & Jalfre, M. (1978) Behavioural despair in rats: A new model sensitive to antidepressant treatments. European Journal of Pharmacology 47:379–91. [aNRS]CrossRefGoogle ScholarPubMed
Porsolt, R. D., Bertin, A., Blavet, N., Deniel, M. & Jalfre, M. (1979) Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. European Journal of Pharmacology 57:201–10. [aNRS]CrossRefGoogle ScholarPubMed
Porsolt, R. D., Le Pichon, M. & Jalfre, M. (1977) Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730–32. [aNRS]CrossRefGoogle ScholarPubMed
Post, R. M., Ballenger, J. C. & Goodwin, F. K. (1980) Cerebrospinal fluid studies of neurotransmitter function in manic and depressive illness. In: Neurobiology of cerebrospinal fluid, ed. Wood, J. H.. Plenum. [arNRS]Google Scholar
Post, R. M., Gerner, R. H., Carman, J. S., Gillin, J. C., Jimerson, D. C., Goodwin, F. K. & Bunney, W. E. Jr, (1978) Effects of a dopamine agonist piribedil in depressed patients. Archives of General Psychiatry 35(5):609–15. [aNRS]CrossRefGoogle ScholarPubMed
Post, R. M. & Jimerson, D. C. (1982) Dopaminergic mechanism in affective illness. Symposium on special aspects of psychopharmacology. SainteMaxime, France. [arNRS]Google Scholar
Post, R. M., Jimerson, D. C., Bunney, W. E. Jr, & Goodwin, F. K. (1980) Dopamine and mania: Behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology 67:297. [aNRS]CrossRefGoogle ScholarPubMed
Price, L. H., Charney, D. S., Rubin, , & Heninger, G. R. (1986) Alpha-2 adrenergic receptor function in depression. Archives of General Psychiatry 43:849–58. [AW]CrossRefGoogle ScholarPubMed
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980a) Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. Journal of Neurochemistry 34:9199. [PMB, PS, JPT]CrossRefGoogle ScholarPubMed
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980b) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286:7477. [GEJ]CrossRefGoogle ScholarPubMed
Quitkin, F., Rifkin, A. & Klein, D. F. (1979) Monoamine oxidase inhibitors: A review of antidepressant effectiveness. Archives of General Psychiatry 36:749–60. [aNRS]CrossRefGoogle ScholarPubMed
Randrup, A., Munkvad, I., Fog, R., Gerlach, J., Molander, L., Kjeilberg, B. & Scheel-Kruger, J. (1975) Mania, depression and brain dopamine. In: Current developments in psychopharmacology, Vol. 2, ed. Essman, W. B. & Valzelli, L.. Spectrum. [aNRS]Google Scholar
Reches, A., Jackson-Lewis, V. & Fahn, S. (1984) Lithium does not interact with haloperidol in the dopaminergic pathways of the brain. Psychopharmacology 82:330–34. [aNRS]CrossRefGoogle ScholarPubMed
Redmond, D. E. Jr, (1979) New and old evidence for the involvement of a brain norepinephrine system in anxiety. In: Phenomenology and treatment of anxiety, ed. Fann, W. G., Karacan, I., Pokorny, A. D., & Williams, R. L.. Spectrum. [JAG]Google Scholar
Reibaud, M., Blanc, G., Studler, J-M., Glowinski, J., Tassin, J-P. (1984) Nondopaminergic prefronto-cortical efferents modulate Dl receptors in the nucleus accumbens. Brain Research 305:4350. [PMB, GEJ, JPT]CrossRefGoogle Scholar
Reynolds, G. P. (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305:827–30. [MLM]CrossRefGoogle ScholarPubMed
Richelson, E. & Pfenning, M. (1984) Blockade by anti-depressant and related compounds of biogenic amine uptake into rat brain synaptosomes: Most anti-depressants selectively block norepinephrine uptake. European Journal of Pharmacology 104:227–86. [aNRS]CrossRefGoogle Scholar
Risch, S. C., Kalin, N. H., Cohen, R. M., Wecker, J., Insel, T. R., Cohen, M. L. & Murphy, D. L. (1981) Muscarinic cholinergic influences on ACTH and B-endorphin release mechanisms in human subjects. Peptides 2:9597. [arNRS]CrossRefGoogle ScholarPubMed
Risch, S. C., Kalin, N. H. & Janowsky, D. S. (1981) Cholinergic challenges in affective illness: Behavioral and neuroendocrine correlates. Journal of Clinical Psychopharmacology 1:186–92. [aNRS]CrossRefGoogle ScholarPubMed
Robbins, A. H. (1976) Depression in patients with parkinsonism. British Journal of Psychiatry 128:141–45. [rNRS]CrossRefGoogle Scholar
Robbins, T. W., Evenden, J. L., Ksir, C., Reading, P., Wood, S. & Carli, M. (1986) The effects of d-amphetamine, alpha-flupenthixol, and mesolimbic dopamine depletion on a test of attentional switching in the rat. Psychopharmacology 90:7278. [ARC]CrossRefGoogle ScholarPubMed
Robbins, T. W. & Everitt, B. J. (1982) Functional studies of the central catecholamines. International Review of Neurobiology 23:303–65. [AEK]CrossRefGoogle ScholarPubMed
Robbins, T. W. & Koob, G. F. (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285:409–12. [arNRS]CrossRefGoogle ScholarPubMed
Roberts, D. C. S., Corcoran, M. E. & Fibiger, H. C. (1977) On the role of ascending catecholamine systems in intravenous self-administration of cocaine. Pharmacology, Biochemistry and Behavior 6:615–20. [arNRS]CrossRefGoogle ScholarPubMed
Roberts, D. C. S., Koob, G. F., Klonoff, P. & Fibiger, H. C. (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacology, Biochemistry and Behavior 12:781–87. [aNRS]CrossRefGoogle ScholarPubMed
Roberts, D. C. S., Zis, A. P. & Fibiger, H. C. (1975) Ascending catecholamine pathways and amphetamine induced locomotor activity: Importance of dopamine and apparent non-involvement of norepinephrine. Brain Research 93:441–54. [rNRS]CrossRefGoogle ScholarPubMed
Robinson, T. G. & Beart, P. M. (in press) Excitotoxic lesions reveal excitant amino acid projections to the nucleus accumbens septi from the basolateral nucleus of the amygdala and the parataenial nucleus of the thalamus in the rat. Neurosdence Letters. [PMB]Google Scholar
Rolls, E. T. (1984) Responses of neurons in different regions of the striatum of the behaving monkey. In: The basal ganglia: Structure and function, ed. McKenzie, S. S., Kenn, R. E. & Wilcock, L. N.. Plenum. [arNRS]Google Scholar
Rolls, E. T., Ashton, J., Williams, G., Thorpe, S. J., Mogenson, G. J., Colpaert, F. & Phillips, A. G. (1982) Neural activity in the ventral striatum of the behaving monkey. Proceedings of the Society of Neuroscience 8:169. [aNRS]Google Scholar
Rolls, E. T., Thorpe, S. J., Boytim, M., Szabo, I. & Perrett, D. I. (1984) Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 12:1201–12. [rNRS]CrossRefGoogle ScholarPubMed
Roth, M. (1979) A classification of affective disorders based on a synthesis of new and old concepts. In: Research in the psychobiology of human behavior, ed. Meyer, E. III & Brady, I. V.. Johns Hopkins University Press. [JAG]Google Scholar
Russchen, F. T., Bakst, I., Amaral, D. G. & Price, J. L. (1985) The amygdalostriatal projections in the monkey: An anterograde tracing study. Brain Research 329:241–57. [AEK]CrossRefGoogle ScholarPubMed
Rylander, G. (1969) Clinical and medico-criminological aspects of addictions to central stimulatory drugs. In: Abuse of central stimulants, ed. Sjoquist, F. & Tottie, M.. Raven Press. [aNRS, DLC]Google Scholar
Santamaria, J., Tolosa, E. & Valles, A. (1986) Parkinson's disease with depression: A possible subgroup of idiopathic parkinsonism Neurology 36:1130–33. [rNRS]CrossRefGoogle ScholarPubMed
Scheel-Kruger, J. (1983) The GABA receptor and animal behavior. In: GABA receptors, ed. Enna, S. J.. Humana Press. [ARC]Google Scholar
Scheel-Kruger, J. (1986) Dopamine-GABA interactions: Evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurologica Scandinavica 73, Supplementum 107. [ARC]Google Scholar
Schildkraut, J. (1965) Catecholamine hypothesis of affective disorders. American Journal of Psychiatry 122:509–22. [aNRS]CrossRefGoogle ScholarPubMed
Schildkraut, J. (1970) Neuropsychopharmacology and the affective disorders. Little Brown. [aNRS]Google Scholar
Schutz, R. A., Schutz, M. T. B., Orsingher, O. A. & Izquierdo, I. (1979) Brain dopamine and noradrenaline levels in rats submitted to four different aversive tasks. Psychopharmacology 63:289–92. [aNRS]CrossRefGoogle Scholar
Schwab, R. S. & England, A. C. (1958) Parkinson's disease. Journal of Chronic Diseases 8:488509. [rNRS]CrossRefGoogle ScholarPubMed
Schwaber, J. S., Kapp, B. S., Higgins, G. A. & Rapp, P. R. (1982) Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. Journal of Neuroscience Research 2:1424–38. [GFA]CrossRefGoogle ScholarPubMed
Seeman, P. (1981) Dopamine receptors in post-mortem schizophrenic brains. Lancet 2:1130. [arNRS]Google Scholar
Seeman, P., Ulpian, C., Bergeron, G., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G. P. & Tourtellotte, W. W. (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225:728–31. [arNRS]CrossRefGoogle ScholarPubMed
Seligman, M. E. P. (1975) Helplessness; On depression, development, and death. Freeman. [aNRS]Google Scholar
Shelton, R. C., Doran, A. J., Pickar, D. & Weinberger, D. R. (1985) Cerebral structural pathology in schizophrenia: A new cohort. Abstracts: Proceedings of the World Congress of Biological Psychiatry, Philadelphia, 09. [GEJ]Google Scholar
Shelton, R. C. & Weinberger, D. R. (1986) X-ray computerized tomography studies in schizophrenia: A review and synthesis. In: The neurology of schizophrenia, ed. Nasrallah, H. & Weinberger, D. R.. Elsevier. [GEF]Google Scholar
Sherman, A. D. & Petty, F. (1982) Specificity of the learned helplessness animal model of depression. Pharmacology, Biochemistry and Behavior 16:449–54. [JAG]CrossRefGoogle Scholar
Siegel, C., Waldo, M., Mizner, G., Adler, L. E. & Freedman, R. (1984) Deficits in sensory gating in schizophrenic patients and their relatives. Archives of General Psychiatry 41:607–13. [rNRS]CrossRefGoogle ScholarPubMed
Siggins, G. R. (1978) Electrophysiological role of dopamine in striatum: Excitatory or inhibitory. In: Psychopharmacology: A generation of progress, ed. Upton, M. A., Mascio, A. Di & Killam, K. F.. Raven Press. [rNRS]Google Scholar
Siggins, G. R., Hoffer, B. J. & Ungerstedt, O. (1974) Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sciences 15:779–92. [rNRS]CrossRefGoogle ScholarPubMed
Sitaram, N. & Gershon, S. (1983) From animal models to clinical testing – promises and pitfalls. Progress in Neuro-Psychopharmacology and Biological Psychiatry 7:227–28. [PS]CrossRefGoogle ScholarPubMed
Sitaram, N., Gillin, J. C. & Bunney, W. E. Jr (1984) Cholinergic and catecholaminergic receptor sensitivity in affective illness: Strategy and theory. In: Neurobiology of mood disorders, ed. Post, R. M. & Ballenger, J. C.. Williams and Wilkins. [aNRS]Google Scholar
Snyder, S. H. (1972) Catecholamines in the brain as mediators of amphetamine psychosis. Archives of General Psychiatry 27:169–79. [aNRS]CrossRefGoogle ScholarPubMed
Solomon, P. R., Crider, A., Winkelman, J. W., Turi, A., Kamer, R. M. & Kaplan, L. J. (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced super-sensitivity-relationship to schizophrenic attention disorder. Biological Psychiatry 16:519–37. [JAG]Google ScholarPubMed
Solomon, P. R. & Staton, D. M. (1982) Differential effects of micro injections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus. Biological Psychiatry 17:743–56. [JAG]Google ScholarPubMed
Spyraki, C., Fibiger, H. C. & Phillips, A. G. (1982) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Research 253:185–93. [aNRS]CrossRefGoogle ScholarPubMed
Staunton, D. A., Magistretti, P. J., Shoemaker, W. J. & Bloom, F. E. (1982) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum: I. Locomotor activity and behavioral supersensitivity. Brain Research 232:391400. [aNRS]CrossRefGoogle ScholarPubMed
Staunton, D. A., Magistretti, P. J., Shoemaker, W. J., Deyo, S. N. & Bloom, F. E. (1982) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum: II. No effect on denervation or neurolepticinduced supersensitivity. Brain Research 232:401–12. [aNRS]CrossRefGoogle ScholarPubMed
Stein, L. & Wise, C. D. (1971) Possible aetiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–36. [aNRS]CrossRefGoogle Scholar
Stern, Y. & Langston, J. W. (1985) Intellectual changes in patients with MPTP-induced parkinsonism. Neurology 35:1506–9.[aNRS]CrossRefGoogle ScholarPubMed
Sternberg, D. E., Bowers, M. B. Jr, Heninger, G. R. & Charney, D. S. (1983) Lithium prevents adaptation of brain dopamine systems to haloperidol in schizophrenic patients. Psychiatry Research 10:7986. [aNRS]CrossRefGoogle ScholarPubMed
Stevens, J. R. (1966) Psychiatric implications of psychomotor epilepsy. Archives ofCeneral Psychiatry 14:461–71. [aNRS]CrossRefGoogle ScholarPubMed
Stevens, J. R. (1973) An anatomy of schizophrenia? Archives of General Psychiatry 29:177–89. [aNRS, GFA, JRS]CrossRefGoogle ScholarPubMed
Stevens, J. R. (1984) Schizophrenia and the brain. Archives of General Psychiatry 41:816–17. [aNRS]CrossRefGoogle ScholarPubMed
Stevens, J. R. & Livermore, A. (1978) Kindling of the mesolimbic dopamine system: Animal model of psychosis. Neurology 28:3646. [aNRS]CrossRefGoogle ScholarPubMed
Stewart, J., de Wit, H. & Eikelboom, R. (1984) Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review 91:251–68. [JAG]CrossRefGoogle ScholarPubMed
Stinus, L., Koob, G. F., Ling, N., Bloom, F. E. & Le Moal, M. (1980) Locomotor activation induced by infusion of endorphins into the ventral tegmental area: Evidence for opiate interactions. Proceedings of the National Academy of Sciences of the United States of America 77:2323–27. [aNRS]CrossRefGoogle Scholar
Sulser, F. (1980) Antidepressant drug research: Its impact on neurobiology and psychobiology. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G.. Raven Press. [aNRS]Google Scholar
Swanson, L. W. (1976) An autoradiographic study of the efferent connections of the preoptic regions in the rat. Journal of Comparative Neurology 167:227–56. [aNRS]CrossRefGoogle ScholarPubMed
Swanson, L. W. & Cowan, W. M. (1975) A note on the connections and development of the nucleus accumbens. Brain Research 92:324–30. [aNRS]CrossRefGoogle ScholarPubMed
Swanson, L. W. & Hartman, B. K. (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine βhydroxylase as a marker. Journal of Comparative Neurology 163:467506. [rNRS]CrossRefGoogle Scholar
Swanson, L. W., Mogenson, G. J., Gerfen, C. R. & Robinson, P. (1984) Evidence for a projection from the lateral preoptic area and substantia innominata to the “mesencephalic locomotor region” in the rat Brain Research 295:161–78. [aNRS]CrossRefGoogle Scholar
Swanson, L. W., Sawchenko, P. E., Rivier, J. & Vale, W. (1983) The organization of ovine corticotropin releasing factor (CRF) immunoreactive cells and fibres in the rat brain: Immunohistochemical study. Neuroendocrinology 36:165–86. [aNRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Braff, D. L., Geyer, M. A. & Koob, G. F. (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biological Psychiatry 21:2333. [arNRS, JAG]CrossRefGoogle ScholarPubMed
Swerdlow, N. R. & Koob, G. F. (1984) The neural substrates of apomorphinestimulated locomotor activity following denervation of the nucleus accumbens. Life Sciences 35:2537–44. [rNRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R. & Koob, G. F. (1985) Separate neural substrates of the locomotor-activating properties of amphetamine, heroin, caffeine and corticotropin releasing factor (CRF) in the rat. Pharmacology Biochemistry & Behavior 23:303–7. [rNRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R. & Koob, G. F. (in press a) Supersensitive locomotor response to intraventricular norepinephrine following selective dopamine depletion from the nucleus accumbens in rats. Neuroscience Abstracts. [rNRS]Google Scholar
Swerdlow, N. R. & Koob, G. F. (in press b) Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: Effects on locomotor activity mediated by nucleus accumbensventral pallidal circuitry. Brain Research.[rNRS]Google Scholar
Swerdlow, N. R., Lee, D., Koob, G. F. & Vaccarino, F. J. (1985) The effects of chronic dietary lithium on behavioral indices of dopamine denervation supersensitivity in the rat. Journal of Pharmacology and Experimental Therapeutics 235:324. [arNRS]Google ScholarPubMed
Swerdlow, N. R., Swanson, L. W. & Koob, G. F. (1984) Substantia innominata: Critical link in the behavioral expression of mesolimbic dopamine stimulation in the rat. Neuroscience Letters 50:1924. [aNRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Vaccarino, F. J., Amalric, M. & Koob, G. F. (1986) The neural substrates for the motor-activating properties of psychostimulants: A review of recent findings. In: Pharmacology Biochemistry and Behavior 25:233–48. [rNRS]CrossRefGoogle ScholarPubMed
Taghzouti, K., Simon, H., Hervé, D., Blanc, G., Studler, J. M., Glowinski, J., Le Moal, M. & Tassin, J. P. (submitted) Disturbances of motor and cognitive functions following lesions of the mesencephalic dopaminergic cell bodies are corrected by lesions of the dorsal noradrenergic ascending system. [JPT]Google Scholar
Taghzouti, K., Simon, H., Tazi, A., Dantzer, R. & Le Moal, M. (1985) The effect of 6-OHDA lesions of the lateral septum on schedule-induced polydipsia. Behavioral Brain Research 15:18. [rNRS]CrossRefGoogle ScholarPubMed
Taghzouti, K., Tassin, J. P. & Simon, H. (submitted) Bilateral injections of 6-OHDA in the amygdala provoke opposite changes of DA utilization in the nucleus accumbens and the prefrontal cortex. Relationship with amphetamine-induced locomotor hyperactivity. [JPT]Google Scholar
Tamminga, C. A., Lucignani, G., Porrino, L. F., Littman, B., Thaker, K. & Alphs, L. (1984) Cholecystokinin: Potential peptidergic antipsychotic. Clinical Neuropharmacology 7 (Suppl. l):556557. [rNRS]CrossRefGoogle Scholar
Tassin, J. P., Hervé, D., Blanc, G., Thierry, A. M. & Glowinski, J. (1987) Functional significance of long-term receptor hetero-regulation. Further evidence for cortico-subcortical relationships. Seventh European Winter Conference on Brain Research, Val Thorens, France, abstract. [JPT]Google Scholar
Tassin, J. P., Hervé, D., Simon, H., Taghzouti, K., Le Moal, M. & Glowinski, J. (in press) Long-term receptor regulation induced by denervation of heterologous afferent fibers: Functional significance. Wenner Gren Symposium, 10 1986, Stockholm. [JPT]Google Scholar
Tassin, J. P., Stinus, L., Simon, H., Blanc, G., Thierry, A. M., Le Moal, M., Cardo, B. & Glowinski, J. (1978) Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of fronto-cortical DA innervation in the rat. Brain Research 141:267–81. [JPT]CrossRefGoogle Scholar
Taylor, M. A. & Abrams, R. (1973) The phenomenology of mania: A new look at some old patients. Archives of General Psychiatry 29:520–22. [AEK]CrossRefGoogle Scholar
Taylor, M. A. & Abrams, R. (1975) Acute mania: Clinical and genetic study of responders and nonresponders to treatments. Archives of General Psychiatry 32:863–65. [AEK]CrossRefGoogle ScholarPubMed
Taylor, J. R. & Robbins, T. W. (1984) Enhanced behavioral control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology 84:405–12. [AEK]CrossRefGoogle ScholarPubMed
Tyrer, P. & Mackay, A. (1986) Schizophrenia: No longer a functional psychosis. Trends in Neurosciences 9:537–38. [MLM]CrossRefGoogle Scholar
Uhl, G. R., Hedreen, J. C. & Price, D. L. (1985) Parkinson's disease: Loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215–18. [aNRS]CrossRefGoogle ScholarPubMed
Vaccarino, F. J. & Koob, G. F. (1984) Microinjections of nanogram amounts of sulfated cholecystokinin octapeptide into the rat nucleus accumbens attenuates brain stimulation reward. Neuroscience Letters 52:6166. [rNRS]CrossRefGoogle ScholarPubMed
Van Hoesen, G. W. & Pandya, D. N. (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey: I. Frontal lobe afferents. Brain Research 95:2538. [aNRS]CrossRefGoogle ScholarPubMed
Van Woert, M. H., Ambani, L. & Bowers, M. B. Jr, (1972) Levodopa and eholinergic hypersensitivity in Parkinson's disease. Neurology (supplement) 8693. [rNRS]CrossRefGoogle Scholar
Verimer, T., Goodale, D. B. & Long, J. P. (1980) Lithium effects on halopcridol-induced pre- and post-synaptic dopamine receptor supersensitivity. Journal of Pharmacy and Pharmacology 32:665–66. [aNRS]CrossRefGoogle Scholar
Vives, F. & Mogenson, G. J. (1985) Electrophysiological evidence that the mcdiodorsal nucleus of the thalamus is a relay between the ventral pallidum and the medial prefrontal cortex in the rat. Brain Research 334:329–37. [aNRS]CrossRefGoogle Scholar
Volkow, N. D., Brodie, J. D., Wolf, A. P., Gomez-Mont, F., Cancro, R., Van Celder, P., Russell, J. A. G. & Overall, J. (1986) Brain organization of schizophrenia. Journal of Cerebral Blood Flow and Metabolism 6:441–46. [AW]CrossRefGoogle ScholarPubMed
Vrijmoed-de Vries, M. C. & Cools, A. R. (1986) Differential effects of striatal injections of dopaminergic, cholinergic and GABAergic drugs upon swimming behavior of rats. Brain Research 364:7790. [ARC]CrossRefGoogle ScholarPubMed
Waldo, M. C. & Freedman, R. (1986) Gating of auditory evoked responses in normal college students. Psychiatry Research 19:233–39. [rNRS]CrossRefGoogle ScholarPubMed
Warburton, J. W. (1967) Depressive symptoms in Parkinson patients referred for thalamotomy. Journal of Neurology, Neurosurgery and Psychiatry 30:368–70. [rNRS]CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1986) The pathogenesis of schizophrenia: A neurodevelopmental theory. In: The neurology of schizophrenia, ed. Nasrallah, H. & Weinberger, D. R.. Elsevier. [GEJ]Google Scholar
Weinberger, D. R., Berman, K. F. & Chase, T. N. (1986) Dopamine and human cognition: rCBF studies in Parkinson's disease. Neuroscience Abstracts 12:1142. [GEJ]Google Scholar
Weinberger, D. R., Berman, K. F. & Zee, R. F. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex of schizophrenia I: Regional cerebral blood flow evidence. Archives of General Psychiatry 43:114–24. [GEJ, AEK]CrossRefGoogle ScholarPubMed
Weiner, I., Lubow, R. E. & Feldon, J. (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83:194–99. [JAC]CrossRefGoogle Scholar
Weiss, J. M., Bailey, W. H., Goodman, P. A., Hoflman, L. J., Ambrose, M. J., Salman, S. & Charry, J. M. (1982) A model for neurochemical study of depression. In: Behavioral models and the analysis of drug action, ed. Spiegelstein, M. Y. & Levy, A.. Elsevier. [JAG]Google Scholar
Whishaw, I. Q., Kolb, B. & Sutherland, R. J. (1983) Analysis of behavior in the laboratory rat. In: Behavioral approaches to brain research, ed. Robinson, T.. Oxford. [BK]Google Scholar
Whitaker, P. M., Crow, T. J. & Ferrier, I. N. (1981) Tritiated LSD binding in frontal cortex in schizophrenia. Archives of General Psychiatry 38:278–80. [aNRS]CrossRefGoogle ScholarPubMed
Widerlov, E., Kalivas, P. W., Lewis, M. H., Prange, A. J. Jr, & Breese, G. R. (1983) Influence of cholecystokinin on central monoaminergie pathways Regulatory Peptides 6:99109. [rNRS]CrossRefGoogle ScholarPubMed
Widerlov, E., Lindstrom, L. H., Besev, C., Manberg, P. J., Nemeroff, C. B., Breese, G. R., Kizer, J. S. & Prange, A. J. Jr, (1982) Subnormal CSF levels of neurotensin in a subgroup of schizophrenic patients: Normalization after neuroleptic treatment. American Journal of Psychiatry 139:1122–26. [PWK]Google Scholar
Willner, P. (1983a) Dopamine and depression: A review of recent evidence. I. Empirical studies. Brain Research Reviews 6:211–24. [aNRS, AEK]CrossRefGoogle Scholar
Willner, P. (1983b) Dopamine and depression: A review of recent evidence. III. The effects of antidepressant treatments. Brain Research Reviews 6:237–46. [AEK]CrossRefGoogle Scholar
Willner, P. (1984) The validity of animal models of depression. Psychopharmacology 83:116. [aNRS]CrossRefGoogle ScholarPubMed
Willner, P. (1985) Depression: A psychobiological synthesis. Wiley. [JAG]Google Scholar
Winokur, A., Amsterdam, J. & Caroff, S. (1982) Variability of hormonal responses to a series of neuroendocrine challenges (TRH, GnRH, ITT, DST) in depressed patients. American Journal of Psychiatry 139:3944. [aNRS]Google ScholarPubMed
Winokur, G., Morrison, J., Clancy, J. & Crowe, R. (1972) The Iowa 500. II. A blind family history comparison of mania, depression, and schizophrenia. Archives of General Psychiatry 276:462–64. [AEK]CrossRefGoogle Scholar
Wise, R. A. (1978) Catecholamine theories of reward: A critical review. Brain Research 152:180–83. [JAG]CrossRefGoogle ScholarPubMed
Wise, R. A. (1982) Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences 5:3987. [aNRS, JAG]CrossRefGoogle Scholar
Wolff, E. A., Putnam, F. W. & Post, R. M. (1985) Motor activity and affective illness. Archives of General Psychiatry 42:288–94. [aNRS]CrossRefGoogle ScholarPubMed
Wolkin, A., Angrist, B., Wolf, A., Rotrosen, J., Jaeger, J., Jordan, B. & Brodie, J. (1984) Pet determinations of cerebral metabolic activity in chronic schizophrenia: Baseline measures and effects of dopamine agonists and antagonists. In: Proceedings of the American College of Neuropsychology, San Juan, Puerto Rico. [aNRS]Google Scholar
Wolkin, A., Jaeger, J., Brodie, J. D., Wolf, A. P., Fowler, J., Rotrosen, J., Gomez-Mont, F. & Cancro, R. (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. American Journal of Psychiatry 142:564–71. [AW]Google ScholarPubMed
Wong, D. F., Wagner, H. N. Jr, Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., Tamminga, C. A., Broussqlle, E. P., Ravert, H. T., Wilson, A. A., Toung, J. K. T., Malat, J., Williams, J. A., OTuama, L. A., Snyder, S. H.Kuhar, M. J. & Gjedde, A. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–62. [rNRS]CrossRefGoogle ScholarPubMed
Woodruff, G. N., McCarthy, P. S. & Walker, R. J. (1976) Studies on the pharmacology of neurones in the nucleus accumbens of the rat. Brain Research 115:233–42. [rNRS]CrossRefGoogle ScholarPubMed
Wyatt, R. J., Schwartz, M. A., Erdelyi, E. & Barchas, J. P. (1975) Dopamine-beta-hydroxylase activity in brains of chronic schizophrenic patients. Science 187:368–69. [aNRS]CrossRefGoogle ScholarPubMed
Vamamoto, K. I. & Kaneko, H. (1986) Sequential changes of skin conductance activity in rats after intraventricular administration of 6-hydroxydopamine. Progress in Neuropsychopharmacology, and Biological Psychiatry 10:723–28. [rNRS]CrossRefGoogle Scholar
Yeterian, E. H. & van Hoesen, G. W. (1978) Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections. Brain Research 139:4363. [AEK]CrossRefGoogle ScholarPubMed
Yokel, R. A. & Wise, R. A. (1976) Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48:311–18. [aNRS]CrossRefGoogle ScholarPubMed
York, D. H. (1967) The inhibitory actions of dopamine on neurons of the caudate nucleus. Brain Research 5:263–66. [rNRS]CrossRefGoogle ScholarPubMed
Zaborszky, L., Alheid, G. F., Alones, V. E., Oertel, W. H., Schmechel, D. E. & Heimer, L. (1982) Afferents of the ventral pallidum studied with a combined immunohistochemical-anterograde degeneration method. Society of Neuroscience Abstracts 8:218. [aNRS]Google Scholar
Zaborszky, L., Alheid, G. F., Beinfield, M. C., Eiden, L. E., Heimer, L.Palkovits, M. (1985) Cholecystokinin innervation of the ventral striatum: A morphological and biochemical study. Neuroscience 14:427–53. [GFA]CrossRefGoogle Scholar
Zemlan, F. P. & Garver, D. L. (1984) Dopamine suprasensitivity and thought disorder in psychosis. In: Proceedings of the American College of Neuropsychology, San Juan, Puerto Rico. [aNRS]Google Scholar
Zigmond, M. J. & Strieker, E. M. (1984) Parkinson's disease: Studies with an animal model. Life Sciences 35:518. [AAG]CrossRefGoogle ScholarPubMed
Zis, A. P. (1983) Opiate-endocrine dysregulation in depression? American Psychological Association Annual Meeting, New York. [aNRS]Google Scholar