Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T12:05:27.155Z Has data issue: false hasContentIssue false

Express saccades and visual attention

Published online by Cambridge University Press:  04 February 2010

B. Fischer
Affiliation:
Department of Neurophysiology, University of Freiburg, D - 78 Freiburg, Germany Electronic mail: franz.aiple@sunl.ruf.uni-freiburg.dbp.de
H. Weber
Affiliation:
Department of Neurophysiology, University of Freiburg, D - 78 Freiburg, Germany Electronic mail: franz.aiple@sunl.ruf.uni-freiburg.dbp.de

Abstract

One of the most intriguing and controversial observations in oculomotor research in recent years is the phenomenon of express saccades in monkeys and man. These are saccades with such short reaction times (100 msec in man, 70 msec in monkeys) that some experts on eye movements still regard them as artifacts or as anticipatory reactions that do not need any further explanation. On the other hand, some research groups consider them not only authentic but also a valuable means of investigating the mechanisms of saccade generation, the coordination of vision and eye movements, and the mechanisms of visual attention.

This target article puts together pieces of experimental evidence in oculomotor and related research – with special emphasis on the express saccade – to enhance our present understanding of the coordination of vision, visual attention, and the eye movements subserving visual perception and cognition.

We hypothesize that an optomotor reflex is responsible for the occurrence of express saccades, one that is controlled by higher brain functions involved in disengaged visual attention and decision making. We propose a neural network as the basis for more elaborate mathematical models or computer simulations of the optomotor system in primates.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albano, J. E. & King, W. M. (1989) Rapid adaptation of saccadic amplitude in humans and monkeys. Investigations in Ophthalmology and Visual Science 30:1883–93. [aBF]Google ScholarPubMed
Allport, D. A. (1989) Visual attention. In: Foundations of cognitive science, ed. Posner, M. I.. MIT Press. [HD]Google Scholar
Andersen, R. A. & Gnadt, J. W. (1989) Posterior parietal cortex. In: The neurobiology of saccadic eye movements, ed. Wurtz, R. H. & Goldberg, M. E.. Elsevier. [ER]Google Scholar
Aslin, R. & Salapatek, P. (1975) Saccadic localisation of visual targets by the very young human infant. Perception & Psychophysics 17:293302. [aBF]CrossRefGoogle Scholar
Astrue, J. (1971) Cortieofugal connections of area 8 (frontal eye field) in Macaca mulatta. Brain Research 33:241–56. [aBF]CrossRefGoogle Scholar
Auerhach, C. & Sperling, P. (1974) A common auditory-visual space: Evidence for its reality. Perception & Psychophysics 16:129–35. [RMB]CrossRefGoogle Scholar
Bachmann, T. (1988) Time course of the subjective contrast enhancement for a second stimulus in successively paired above-threshold transient forms. Vision Research 28:1255–61. [TB]CrossRefGoogle ScholarPubMed
Bachmann, T. (1993) Psychophysiology of visual masking: The fine structure of conscious experience. Nova. [TB]Google Scholar
Barabanshehikov, V. A., Belopolsky, V. I. & Vergiles, N. Yu. (1981/1982) Optical methods of transformation of visual feedback. Soviet Psychology 20:8095. [VIB]CrossRefGoogle Scholar
Barbas, H. & Mesulam, M.-M. (1980) Differential afferent input to subdivisions within the frontal eye fields (area 8) of macaque. Neuroscience Abstracts 114.4(6):316. [aBF]Google Scholar
Barnes, C. S. & Hallett, P. E. (1992) Saccadic eye movements to briefly flashed targets. Society for Neuroscience Abstracts 18:669. [PEH]Google Scholar
Battersby, W. S., Bender, M. B., Pollack, M. & Kahn, R. L. (1956) Unilateral “spatial agnosia” (inattention). Brain 79:6893. [RMB]CrossRefGoogle ScholarPubMed
Banmeister, A. & Joubert, C. (1969) Interactive effects on reaction time of preparatory interval length and preparatory interval frequency. Journal of Experimental Psychology 82:393–95. [JDS]CrossRefGoogle Scholar
Becker, W. (1972) The control of eye movements in the saccadic system. Bibliotheca Ophthalmologica 82:233–43. [aBF, PEH]Google ScholarPubMed
Becker, W. (1976) Do correction saccades depend exclusively on retinal feedback? A note on the possible role of nonretinal feedback. Vision Research 16:425–27. [PEH]CrossRefGoogle ScholarPubMed
Becker, W. (1989) Metrics. In: Reviews of oculomotor research 3. The neurobiology of saccadic eye movements, ed. Wurtz, R. H. & Goldberg, M. E.. Elsevier. [aBF, JEA, VIB, JMF, FV]Google ScholarPubMed
Becker, W. (1991) Saccades. In: Eye movements, ed. Carpenter, R. H. S.. Macmillan. [MJ]Google Scholar
Becker, W. & Jürgens, R. (1979) An analysis of the saccadic system by means of donble-stup stimuli. Vision Research 19:967–83. [JEA, HD. JMF, MHF, PEH]CrossRefGoogle ScholarPubMed
Belopolsky, V. I. (1985) Selective attention and eye movement control. Psikhohgichcskii Zhurnal (Soviet Journal of Psychology) 6(3):5673. [VIB]Google Scholar
Belopolsky, V. I. (1988) Towards a model of visual spatial attention. In: Psychophysiology 88. Proceedings of the Fourth Conference of the International Organization of Psychophysiology. Prague. [VIB]Google Scholar
Belopolsky, V. I. (1989a) On mechanisms of gaze control in humans. In: Psikhologiia cospriiatiia (The psychology of perception), ed. Zomov, B. I., Yu, M., Magnussen, S., Saugstad, P. & Mit'kin, A. A.. Nanka. [VIB]Google Scholar
Belopolsky, V. I. (1989b) External and internal control of spatial visual attention. Perception 18:525. [VIB]Google Scholar
Bender, D. B. (1982) Receptive field properties of neurons in the macaque inferior pulvinar. Journal of Neurophysiology 48:117. [DLR]CrossRefGoogle ScholarPubMed
Birbaumer, N. (1992) Slow brain potentials change behavior: From the laboratory to reality. Abstract, Sixth International Congress of Psychophysiology, Berlin. [ER]CrossRefGoogle Scholar
Biscaldi, M., Boch, R. & Fischer, B. (1989) Effects of directed attention on saccadic and manual reaction times. Perception 18:521. [aBF, VIB, MHF]Google Scholar
Bisealdi, M. & Fischer, B. (1993) Saccadic eye movements of dyslexic children in non-cognitive tasks. In: Studies in visual information processing, ed. Wright, S. & Groner, R.. Elsevier. [arBF]Google Scholar
Boch, R. (1989) Saccadic reaction times after chemical lesions in striate and prestriate cortex of the rhesus monkey. Investigations in Ophthalmology and Visual Science 30:184. [aBF]Google Scholar
Boch, R. & Fischer, B. (1986) Further observations on the occurrence of express-saecades in the monkey. Experimental Brain Research 63:487–94. [aBF]CrossRefGoogle ScholarPubMed
Boch, R., Fischer, B. & Ramsperger, E. (1984) Express-saecades of the monkey: Reaction times versus intensity, size, duration, and eccentricity of their targets. Experimental Brain Research 55:223–31. [aBF, PEH, PAR-L]CrossRefGoogle ScholarPubMed
Braun, D. & Breitmeyer, B. G. (1988) Relationship between directed visual attention and saccadic reaction times. Experimental Brain Research 73:546–52. [aBF, BGB, DC, RMK]CrossRefGoogle ScholarPubMed
Braun, D. & Breitmeyer, B. G. (1990) Effects of reappearance of fixated and attended stimuli upon saccadic reaction time. Experimental Brain Research 81:318–24. [BGB]CrossRefGoogle ScholarPubMed
Braun, D., Weber, H., Mergner, T. & Schulte-Monting, J. (1992) Saccadic reaction times in patients with frontal and parietal lesions. Brain 15:1359–86. [aBF, RMB, ER]CrossRefGoogle Scholar
Bronstein, A. M. & Kennard, C. (1987) Predictive eye saccades are different from visually triggered saccades. Vision Research 27:517–20. [aBF]CrossRefGoogle ScholarPubMed
Brooks-Eidelberg, B. A. & Adler, G. A. (1992) A frontal cortical potential associated with saccades in humans. Experimental Brain Research 89:441–46. [ER]CrossRefGoogle ScholarPubMed
Bruce, C. & Goldberg, M. (1984) Physiology of the frontal eye fields. Trends in Netiroscience 7:436–41. [aBF]CrossRefGoogle Scholar
Buchtel, H. A. & Butter, C. H. (1988) Spatial attentional shifts: Implications for the role of polysensory mechanisms. Neuropsychologia 26:499505. [TB]CrossRefGoogle ScholarPubMed
Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. (1981) Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology 46:755–72. [DLR]CrossRefGoogle ScholarPubMed
Butter, C. M., Evans, J., Kirsh, N. & Kewman, D. (1989) Altitudinal neglect following traumatic brain injury: A case report. Cortex 25:135–46. [RMB]CrossRefGoogle ScholarPubMed
Cameron, E. L. & Lennie, P. (1991) Fast saccades to chromatic and achromatic targets. Investigative Ophthalmology and Visual Science (Supplement) 32(4):1094. [ELC]Google Scholar
Cave, K. R. & Kosslin, S. M. (1989) Varieties of size-specific visual selection. Journal of Experimental Psychology: General 118:148–64. [VIB]CrossRefGoogle ScholarPubMed
Chalupa, L. M., Coyle, R. S. & Lindsley, D. B. (1976) Effect of pulvinar lesions on visual pattern discrimination in monkeys. Journal of Neurophysiology 39:354–69. [DLR]CrossRefGoogle ScholarPubMed
Chastain, G. (1992) Is rapid performance improvement across short precuetarget delays due to masking from peripheral precues? Acta Psychologica 79:101–14. [TB]CrossRefGoogle ScholarPubMed
Chevalier, G. & Deniau, J. M. (1987) Functional significance of a double GABAergic link in the striato-nigro-fugal pathways. In: Neurotransmitter interactions in the basal ganglia, ed. Sandier, M., Feuerstein, C. & Seatton, B.. Raven Press. [SJ].Google Scholar
Chevalier, G. & Deniau, J. M. (1990) Disinhibition as a basic process in the expression of striatal functions. Trends in Neuroscience 13:277–80. [SDF]CrossRefGoogle ScholarPubMed
Clark, C. R., Geffen, G. M. & Geffen, L. B. (1989) Catecholamines and the covert orientation of attention in humans. Neuropsychologia 27(2):131–39. [SJ]CrossRefGoogle ScholarPubMed
Coeffé, C. & O'Regan, J. K. (1987) Reducing the influence of non-target stimuli on saccade latency: Predictability and latency effects. Vision Research 27:227–40. [FV]CrossRefGoogle ScholarPubMed
Cohen, J. D., Romero, R. D., Servan-Schreiber, D. & Farah, M. J. (in preparation) Disengaging from the disengage function: The relation of macrostructure to microstructure in parietal attentional deficits. (Manuscript available upon request: J. Cohen, Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213.) [SDF]Google Scholar
Cohen, M. E. & Ross, L. E. (1977) Saccade latency in children and adults: Effects of warning interval and target eccentricity. Journal of Experimental Child Psychology 23:539–49. [JA]CrossRefGoogle ScholarPubMed
Corbetta, M., Miezin, F. M., Shulman, G. L. & Peterson, S. E. (1991) Selective and divided attention during visual discrimination of shape, colour and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience 11:23822402. [SJ]CrossRefGoogle ScholarPubMed
Cowie, R. J. & Holstege, G. (1992) Dorsal mesencephalic projections to pons, medulla and spinal cord in the cat. Limbic and non-limbic components. Journal of Comparative Neurology 319:536–59. [DLR]CrossRefGoogle ScholarPubMed
Crawford, T. J. & Mueller, H. J. (1992) Spatial and temporal effects of spatial attention on human saccadic eye movements. Vision Research 32(2):293304. [DC, TJC, MHF]CrossRefGoogle ScholarPubMed
Dehen, H. & Cambier, J. (1980) Negligence somesthetique, visnelle, auditive, et impersisteuce motrice par lesion ischemiqne limitée hemispherique droite. Nonvelle Presse Medicale 10:249. [RMB]Google Scholar
De Renzi, E. (1982) Disorders of space exploration and cognition. Wiley. [RMB]Google Scholar
Deubel, H. & Frank, H. (1991) The latency of saccadic eye movements to texture-defined stimuli. In: Oculomotor control and cognitive processes, ed. Schmid, R. & Zambarbieri, D.. Elsevier. [HD, MJ]Google Scholar
Deubel, H., Wolf, W. & Hauske, G. (1982) Corrective saccades: Effect of shifting the saccade goal. Vision Research 22:353–64. [HD]CrossRefGoogle ScholarPubMed
Deubel, H., Wolf, W. & Hauske, G. (1984) The evaluation of the oculomotor error signal. In: Theoretical and applied aspects of eye movement research, ed. Gale, A. G. & Johnson, F.. Elsevier/North-Holland. [HD]Google Scholar
Deubel, H., Wolf, W. & Hauske, G. (1986) Adaptive gain control of saccadic eye movements. Human Neurobiology 5:245–53. [aBF]Google ScholarPubMed
Doma, H. & Hallett, P. E. (1988) Rod-cone dependence of saccadic latency in a foveating task. Vision Research 28:899913. [PEH]CrossRefGoogle Scholar
Doma, H. & Hallett, P. E. (1989) Variable contributions of rods and cones to eye-movement lateney in a non-foveating task. Vision Research 29:563–77. [PEH]CrossRefGoogle Scholar
Donchin, E. & Coles, M. G. H. (1991) While an undergraduate waits. Neuropsychologia 29:557–69. [JMF]CrossRefGoogle ScholarPubMed
Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092. [ER]CrossRefGoogle ScholarPubMed
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H. J. (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biological Cybernetics 60:121–30. [ER]CrossRefGoogle ScholarPubMed
Egeth, H. (1977) Attention and preattention. In: Advances in research and theory 11. The psychology of learning and motivation, ed. Bower, G. H.. Academic Press. [VIB]Google Scholar
Engelken, E. J. or Stevens, K. W. (1989) Saccadic eye movements in response to visual, auditory and bisensory stimuli. Aviation, Space and Environmental Medicine 60:763–68. [RMB]Google ScholarPubMed
Eriksen, C. W. & St James, J. D. (1986) Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics 40:225–40. [TB, VIB]CrossRefGoogle ScholarPubMed
Eriksen, C. W. & Webb, J. M. (1989) Shifting of attentional focus within and about a visual display. Perception & Psychophysics 45:175–83. [TB]CrossRefGoogle ScholarPubMed
Farah, M. J., Wong, A. B., Monheit, M. A. & Morrow, L. A. (1989) Parietal lobe mechanisms of spatial attention: Modality-specific or supramodal? Neuropsychologia 27:461–70. [RMB]CrossRefGoogle ScholarPubMed
Fendrich, R., Hughes, H. C. & Renter-Lorenz, P. A. (1991) Fixation point offsets reduce the latency of saccades to acoustic targets. Perception & Psychophysics 50:383–87. [MJ, PAR-L]CrossRefGoogle ScholarPubMed
Findlay, J. M. (1980) The visual stimulus for saccadic eye movements in human observers. Perception 9:721. [PEH]CrossRefGoogle ScholarPubMed
Findlay, J. M. (1981) Spatial and temporal factors in the predictive generation of saccadic eye movements. Vision Research 21:347–54. [WJT]CrossRefGoogle ScholarPubMed
Findlay, J. M. (1982) Global visual processing for saccadic eye movements. Vision Research 22:1033–45. [aBF]CrossRefGoogle ScholarPubMed
Findlay, J. M. (1983) Visual information for saccadic eye movements. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [JMF]Google Scholar
Findlay, J. M. (1987) Visual computation and saccadic eye movements. Spatial Vision 2:175–89. [JMF]CrossRefGoogle ScholarPubMed
Findlay, J. M. (1992) Programming of stimulus-elicited saccadic eye movements. In: Eye movements and visual cognition, ed. Rayner, K.. Springer-Verlag. [JMF]Google Scholar
Findlay, J. M. & Crawford, T. J. (1983) The visual control of saccadic eye movements: Evidence for limited plasticity. In: Eye movements and psychological processes: International perspectives, ed. Groner, R., Menz, C., Fisher, D. F. & Monty, R. A.. Erlbaum. [JMF]Google Scholar
Findlay, J. M. & Harris, L. R. (1984) Small saccades to double stepped targets moving in two dimensions. In: Theoretical and applied aspects of oculomotor research, ed. Gale, A. G. & Johnson, F. W.. Elsevier. [PEH]Google Scholar
Findlay, J. M., Walker, R. & Kentridge, R. W. (in preparation) Three attentional operations affect saccadic eye movement generation. [JMF]Google Scholar
Fischer, B. (1986) Express saccades in man and monkey. Progress in Brain Research 64:155–60. [aBF]CrossRefGoogle ScholarPubMed
Fischer, B. (1987) The preparation of visually guided saccades. Reviews in Physiology, Biochemistry and Pharmacology 106:135. [aBF, RMB, HD, KN, ER]Google ScholarPubMed
Fischer, B. & Boch, R. (1983) Saccadic eye movements after extremely short reaction times in the monkey. Brain Research 260:2126. [aBF, ELC, JMF, PEH, JDS, PW]CrossRefGoogle ScholarPubMed
Fischer, B. & Boch, R. (1990) Cerebral cortex. In: Vision and visual dysfunction, vol. 9: Eye movements, ed. Carpenter, R.. Macmillan. [aBF]Google Scholar
Fischer, B., Boch, R. & Ramsperger, E. (1984) Express-saccades of the monkey: Effect of daily training on probability of occurrence and reaction time. Experimental Brain Research 55:232–42. [aBF, PW]CrossRefGoogle ScholarPubMed
Fischer, B. & Breitmeyer, B. (1987) Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia 25:7383. [RMK, PAR-L, ROW]CrossRefGoogle ScholarPubMed
Fischer, B. & Ramsperger, E. (1984) Human express saccades: Extremely short reaction times of goal directed eye movements. Experimental Brain Research 57:191–95. [aBF, PEH, FV]CrossRefGoogle ScholarPubMed
Fischer, B. & Ramsperger, E. (1986) Human express saccades: Effects of randomization and daily practice. Experimental Brain Research 64:569–78. [aBF, ELC, PEH, RMK, JDS, WJT, FV, PW]CrossRefGoogle ScholarPubMed
Fischer, B. & Rogal, L. (1986) Eye-hand coordination in man: A reaction time study. Biological Cybernetics 55:253–61. [aBF, MHF]CrossRefGoogle Scholar
Fischer, B. & Weber, H. (1990) Saccadic reaction times of dyslexic and agematched normal subjects. Perception 19:805–18. [ABF, ELC, FV]CrossRefGoogle ScholarPubMed
Fischer, B. & Weber, H. (1992) Characteristics of “anti” saccades in man. Experimental Brain Research 89:415–24. [aBF, FV]CrossRefGoogle ScholarPubMed
Fischer, B., Weber, H. & Biscaldi, M. (submitted) The time of secondary saccades to primary targets. [rBF]Google Scholar
Fischer, B., Weber, H., Biscaldi, M., Aiple, F., Otto, P. & Stuhr, V. (1993) Separate populations of visually guided saccades in humans: Reaction times and amplitudes. Experimental Brain Research 92:528–41. [arBF, WJT]CrossRefGoogle ScholarPubMed
Fitzgibbon, E., Goldberg, M. or Segraves, M. (1985) Short term saccadic adaptation in the monkey. In: Adaptive processes in visual and oculomotor systems, ed. Keller, E. & Zee, D.. Pergamon. [aBF]Google Scholar
Ford, A., White, G. T. & Liechtenstein, M. (1959) Analysis of eye movements during free search. Journal of the Optical Society of America 49:287–92. [VIB]CrossRefGoogle ScholarPubMed
Fox, P. T., Fox, J. M., Raichle, M. E. & Urde, R. M. (1985) The role of cerebral cortex in the generation of voluntary saccades: A positron emission tomographic study. Journal of Neurophysiology 54:348–69. [ER]CrossRefGoogle ScholarPubMed
Frens, M. A. & Erkelens, C. J. (1991) Coordination of hand movements and saccades: Evidence for a common and a separate pathway. Experimental Brain Research 85:682–90. [MHF]CrossRefGoogle Scholar
Frost, D. & Pöppel, E. (1976) Different programming modes of human saccadic eye movements as a function of stimulus eccentricity: Indications of a functional subdivision of the visual field. Biological Cybernetics 23:3948. [rBF, ER]CrossRefGoogle ScholarPubMed
Fuchs, A. F. (1967) Saccadic and smooth pursuit eye movements in the monkey. Journal of Physiology, London 191:609–31. [PEH]CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1989) Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex, Journal of Neurophysiology 61:331–49. [ER]CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1991) Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology 65:1464–83. [ER]CrossRefGoogle ScholarPubMed
Gattass, R., Oswaldo-Cruz, E. & Sousa, A. P. B. (1979) Visual receptive fields of units in the pulvinar of Cebus monkey. Brain Research 160:413–30. [DLR]CrossRefGoogle ScholarPubMed
Gaymard, B., Pierrot-Deseilligny, C. & Rivaud, S. (1990) Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Annals of Neurology 28:622–26. [JDS]CrossRefGoogle ScholarPubMed
Glickstein, M., May, J. G. & Mercier, B. E. (1985) Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. Journal of Comparative Neurology 235:343–59. [aBF]CrossRefGoogle ScholarPubMed
Goldberg, G. (1985) Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences 8:567616. [JDS]CrossRefGoogle Scholar
Goldberg, M. E. or Bruce, C. J. (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology 64:489508. [EH]CrossRefGoogle ScholarPubMed
Goldberg, M. E., Bushnell, M. C. & Bruce, C. J. (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research 61:579–84. [aBF]CrossRefGoogle ScholarPubMed
Goldberg, M. E., Colby, E. L. & Duhamel, J.-L. (1990) Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harbor Symposia on Quantitative Biology 55:729–39. [ER]CrossRefGoogle ScholarPubMed
Goldberg, M. E. & Wurtz, R. (1972) Activity of the superior colliculus in the behaving monkey. II. Effect of attention on neuronal responses. Journal of Neurophysiology 35:560–74. [aBF]CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience 11:137–56. [ER]CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1992) Working memory and the mind. Scientific American 266(9):7379. [ER]Google Scholar
Goldman-Rakic, P S. & Selemon, L. D. (1990) New frontiers in basal ganglia research. Trends in Neurosciences 13(7):241–44. [SJ]CrossRefGoogle ScholarPubMed
Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit intereolumnar synchronization which reflects global stimulus properties. Nature 338:334–37. [ER]CrossRefGoogle ScholarPubMed
Gray, C. M. & Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences USA 86:16981702. [ER]CrossRefGoogle ScholarPubMed
Guitton, D. (1991) Control of saccadic eye and gaze movements by the superior colliculus and basal ganglia. In: Vision and visual dysfunction, vol. 8: Eye movements, ed. Carpenter, R.. Macmillan. [SDF]Google Scholar
Guitton, D., Buchtel, H. A. & Douglas, R. M. (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research 58:455–72. [aBF, SDF]CrossRefGoogle ScholarPubMed
Haase, V. G., Ruhnau, E., Indra, M. & Poppel, E. (1992) Periodic multimodal distribution of saccadic reaction time (in preparation). [ER]Google Scholar
Haddad, C. M. & Steinman, H. M. (1973) The smallest voluntary saccade: Implications for fixation. Vision Research 13:1075–86. [aBF]CrossRefGoogle ScholarPubMed
Haenny, P. & Schiller, P. (1988) State dependent activity in monkey visual cortex. I. Single cell activity in VI and V4 on visual tasks. Experimental Brain Research 69:225–14. [aBF]CrossRefGoogle Scholar
Hallett, P. E. (1978) Primary and secondary saccades to goals defined by instructions. Vision Research 18:1279–96. [PEH]CrossRefGoogle ScholarPubMed
Hallett, P. E. (1986) Eye movements. In: Handbook of perception and human performance 1. ed. Boff, K. R., Kaufman, L. & Thomas, J. P.. Wiley Interscience. [PEH]Google Scholar
Hallett, P. E. & Adams, B. D. (1980) The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Research 20:329–39. [PEH]CrossRefGoogle Scholar
Hanes, D., Tu, F. & Schall, J. (1992) The effect of temporal context (conditional probability) on saccade latency in macaque. Society for Neuroscience Abstracts 18:698. [PEH]Google Scholar
Harting, J. K., Huerta, M. F., Frankfurter, A. J., Strominger, N. L. & Royce, G. J., (1980) Ascending pathways from the monkey superior colliculus: An autoradiographic analysis. Journal of Comparative Neurology 192:853–82. [aBF]CrossRefGoogle ScholarPubMed
Hawkins, H. L., Shafto, M. G. & Richardson, K. (1988) Effects of target luminance and cue validity on the latency of visual detection. Perception & Psychophysics 44:484–92. [PAR-L]CrossRefGoogle ScholarPubMed
Heijden, A. H. C., Wolters, G. & Enkeling, M. (1988) The effects of advance location cueing on latencies in a single-letter recognition task. Psychological Research 50:94102. [TB]CrossRefGoogle Scholar
Henderson, J. M. (1991) Covert visual attention and saccadic eye movements. Proceedings of Sixth European Conference on Eye Movements, ed. Van Rensbergen, J., Devijver, M. & d'Ydewalle, G.. Katholieke Universiteit, Leuven. [VIB]Google Scholar
Henderson, J. M. (1992a) Identifying objects across saccades: Effects of extrafoveal preview and flanker object context. Journal of Experimental Psychology: Learning, Memory and Cognition 18:521–30. [DC]Google ScholarPubMed
Henderson, J. M. (1992b) Visual attention and eye movement control during reading and scene perception. In: Eye movements and visual cognition: Scene perception and reading, ed. Rayner, K.. Springer-Verlag. [JMH]Google Scholar
Henderson, J. M., Pollatsek, A. & Rayner, K. (1989) Covert visual attention and extrafoveal information use during object identification. Perception & Psychophysics 45:196208. [DC, JMH]CrossRefGoogle ScholarPubMed
Henson, D. B. (1978) Corrective saccades: Effects of altering visual feedback. Vision Research 18:6367. [aBF]CrossRefGoogle ScholarPubMed
Hikosaka, O. (1991) Basal ganglia – possible role in motor coordination and learning. Current Opinion in Neurobiology 1(4):638–43. [SJ]CrossRefGoogle ScholarPubMed
Hikosaka, O. & Wurtz, K. H. (1983a) Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Research 272:368–72. [aBF]CrossRefGoogle ScholarPubMed
Hikosaka, O. & Wurtz, K. H. (1983b) Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology 49:1268–84. [JEA]CrossRefGoogle ScholarPubMed
Honda, H. & Findlay, J. M. (1992) Saccades to targets in three-dimensional space: Dependence of saccadic latency on target location. Perception & Psychophysics 52:167–74. [JMF]CrossRefGoogle ScholarPubMed
Hood, B. M. & Atkinson, J. A. (in press) Disengaging visual attention in the infant and adult. Infant Behaviour and Development. [JA]Google Scholar
Huerta, M. F. & Kaas, J. H. (1990) Supplementary eye field as defined by intracortical microstimulation: Connections in macaques. Journal of Comparative Neurology 293:299330. [JDS]CrossRefGoogle ScholarPubMed
Hughes, H. C. (1984) Effect of flash luminance and positional expectancies on visual response latency. Perception & Psychophysics 36:177–84. [PAR-L]CrossRefGoogle ScholarPubMed
Inhoff, A. W., Pollatsek, A., Posner, M. I. & Rayner, K. (1989) Covert attention and eye movements in reading. Quarterly Journal of Experimental Psychology 41A:6389. [JMH]CrossRefGoogle Scholar
Inhoff, A. W., Topolski, R., Vitu, F. & O'Regan, J. K. (submitted) Foveal engagement of attention and saccade programming during reading: Lack of express saccades. [AWI]Google Scholar
Inhoff, A. W., Topolski, R. & Wang, J. (1992) Saccade programming during short duration fixations: An examination of copytyping, letter detection, and reading. Acta Psychologica 81:121. [AWI]CrossRefGoogle Scholar
Ishida, T. & Ikeda, M. (1989) Temporal properties of information extraction in reading studied by a text-mask replacement technique. Journal of the Optical Society of America A(6):1624–32. [MHF]CrossRefGoogle Scholar
Iwasaki, E. (1990) Facilitation of reaction times with GAP paradigm: Comparison of manual and saccadic responses. Ergonomics 33:833–50. [rBF]CrossRefGoogle Scholar
Jackson, S. & Houghton, C. (1992) Basal ganglia function in the control of visuospatial attention: A neural-network model (submitted). [rBF, SJ]Google Scholar
Jay, M. F. & Sparks, D. L. (1987) Sensorimotor integration in the primate superior colliculus. I. Motor convergence, Journal of Neurophysiology 57:2234. [RMB]CrossRefGoogle ScholarPubMed
Johnson, M. H. (1990) Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience 2:8195. [SDF]CrossRefGoogle ScholarPubMed
Johnson, M. H. (in press) Covert visual attention and the volitional control of eye movements in early infancy. In: Attention and performance XV: Conscious and unconscious processing, ed. Umilta, C. & Moscovitch, M.. MIT Press. [SDF]Google Scholar
Johnston, W. A., Hawley, K. J., Plewe, S. H., Elliott, J. M. G. & DeWitt, M. J. (1990) Attention capture by novel stimuli. Journal of Experimental Psychology: General 119:397411. [ER]CrossRefGoogle ScholarPubMed
Jüttner, M. & Wolf, W. (1992) Occurrence of human express saccades depends on stimulus uncertainty and stimulus sequence. Experimental Brain Research 89:678–81. [aBF, JMF, PEH, MJ, ER, WJT, FV]CrossRefGoogle ScholarPubMed
Jüttner, M. & Wolf, W. (in preparation) Effect of stimulus sequence on the occurrence of human express saccades. [MJ]Google Scholar
Kalesnykas, R. P. & Hallett, P. E. (1987) The differentiation of visually guided and anticipatory saccades in gap and overlap paradigms. Experimental Brain Research 68:115–21. [aBF, PEH, RMK, PW]CrossRefGoogle ScholarPubMed
Kalesnykas, R. P. & Hallett, P. E. (1989) Human saccadic eye movement latency and volition. Investigative Ophthalmology and Visual Science 30:184. [PEH]Google Scholar
Kapoula, Z. (1985) Evidence for a range effect in the saccadic system. Vision Research 25:1155–57. [aBF]CrossRefGoogle ScholarPubMed
Kapoula, Z. & Robinson, D. A. (1986) Saccadic undershoot is not inevitable: Saccades can be accurate. Vision Research 26:735–43. [aBF]CrossRefGoogle ScholarPubMed
Keele, S. W. (1986) Motor control. In: Handbook of perception and human performance. Wiley-Interscience. [PAR-L]Google Scholar
Kimming, H. (1986) Express Sakkaden beim Menschen: Die Rolle der Anfmerksamkeit in der Vorbereitungsphase zielgerichteter Blicksprünge. Dissertation, Fachbereich Medizin Universität Freiburg. [aBF, RMB]Google Scholar
Kingstone, A. & Klein, R. M. (1990) Attention and express saccades. Bulletin of the Psychonomic Society 28:512. [ PAR-L]Google Scholar
Kingstone, A. & Klein, R. M. (in press a) Visual offsets facilitate saccadic latency: Does pre-disengagement of attention mediate this gap effect. Journal of Experimental Psychology: Human Perception and Performance. [RMK]Google Scholar
Kingstone, A. & Klein, R. M. (in press b) What are human express saccades? Perception & Psychophysics. [RMK]Google Scholar
Kingstone, A., Klein, R. M., Maxner, C. & Fisk, J. (1992) Attentional systems and Parkinson's disease. Paper presented at Attention: Theoretical and Clinical Perspectives conference, March 26–27. Toronto, Canada. [SJ]Google Scholar
Klein, R. (1980) Does oculomotor readiness mediate cognitive control of visual attention? In: Attention and performance VIII, ed. Nickerson, R. S.. Erlbaum. [DC, TJC, AWI]Google Scholar
Klein, R., Kingstone, A. & Pontefraet, A. (1992) Orienting of visual attention. In: Eye movements and visual cognition: Scene perception and reading, ed. Rayner, K.. Springer. [TB, MHF, RMK]Google Scholar
Knudsen, E. L. (1982) Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience 2:1177–94. [RMB]CrossRefGoogle ScholarPubMed
Konrad, H. R., Rea, C., Olin, B. & Colliver, J. (1989) Simultaneous auditory stimuli shorten saccadic latencies. Laryngoscope 99:1230–32. [RMB]CrossRefGoogle Scholar
Kornhuber, H. H. (1974) Cerebral cortex, cerebellum and basal ganglia: An introduction to their motor functions. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press. [JMF]Google Scholar
Kowler, E. (1990) The role of visual and cognitive processes in the control of eye movement. In: Reviews of oculomotor research 4: Eye movements and their role in visual and cognitive processes, ed. Kowler, E.. Elsevier. [aBF, MJ, RMK]Google ScholarPubMed
Kowler, E. & Steinman, R. M. (1981) The effect of expectations on slow oculomotor control – III. Guessing unpredictable target displacements. Vision Research 21:191204. [PEH]CrossRefGoogle ScholarPubMed
Künzle, H., Akert, K. & Wurtz, R. H. (1976) Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study. Brain Research 117:487–92. [aBF]CrossRefGoogle ScholarPubMed
Kurtzberg, D. & Vaughan, H. G., (1982) Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades. Brain Research 243:19. [ER]CrossRefGoogle ScholarPubMed
LaBerge, D. & Brown, V. (1986) Variations in size of the visual field in which targets are presented: An attentional range effect. Perception & Psychophysics 40:188200. [VIB]CrossRefGoogle ScholarPubMed
Latanov, A., Weber, H. & Fischer, B. (unpublished observation) The double step effect on express saccades in man and monkey. [aBF]Google Scholar
Latto, R. & Coway, A. (1971) Fixation changes after frontal eye-field lesions in monkeys. Brain Research 30:2536. [aBF]CrossRefGoogle Scholar
Lévy-Schoen, A. (1969) Détermination et latence de la réponse oculomotrice à deux stimulus. L'Année Psychologique 69:373–92. [JMF]CrossRefGoogle Scholar
Lueck, C. J., Crawford, T. J., Savage, C. J. & Kennard, C. (1990) Auditory visual interaction in the generation of saccadic eye movements. Experimental Brain Research 82:149–57. [RMB]CrossRefGoogle Scholar
Luria, A. R. (1966) Higher cortical functions in man. Tavistock. [RMB]Google Scholar
Lynch, J. C. & McLaren, J. W. (1989) Deficits of visual attention and saccadic eye movements after lesions of parieto-occipital cortex in monkeys. Journal of Neurophysiology 61:7490. [RMB]CrossRefGoogle Scholar
Lyon, D. R. (1990) Large and rapid improvement in form discrimination accuracy following a location precue. Acta Psychologica 73:6982. [TB]CrossRefGoogle ScholarPubMed
Mackeben, M. & Nakayama, K. (1993) Express attentional shifts. Vision Research 33:8590. [aBF, HD, KN]CrossRefGoogle ScholarPubMed
Mangun, C. R. & Hillyard, S. A. (1991) Modulations of sensory-evoked potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance 17:1057–74. [PAR-L]Google ScholarPubMed
Mathers, L. H. & Rapisardi, S. C. (1973) Visual and somatosensory receptive fields of neurons in the squirrel monkey pulvinar. Brain Research 64:6583. [DLR]CrossRefGoogle ScholarPubMed
Mayfrank, L., Mobashery, M., Kimmig, H. & Fischer, B. (1986) The role of fixation and visual attention in the occurrence of express saccades in man. European Archives of Psychiatry and Neurological Science 235:269–75. [aBF, VIB, DC, RMK, KN, WJT, PW]CrossRefGoogle ScholarPubMed
McConkie, G. W. (1979) On the role and control of eye movements in reading. In: Processing of visible language, vol. 1., ed. Kolers, P. A., Wrolstad, M. E. & Bouma, H.. Plenum. [DC]Google Scholar
McConkie, G. W. & Rayner, K. (1975) The span of the effective stimulus during a fixation in reading. Perception & Psychophysics 17:578–86. [JMH]CrossRefGoogle Scholar
McConkie, G. W. & Rayner, K. (1976) Asymmetry of the perceptual span in reading. Bulletin of the Psychonomic Society 8:365–68. [ VIB, JMH]CrossRefGoogle Scholar
McLachlan, G. J. & Basford, K. E. (1987) Mixture models. Marcel Dekker. [MJ]Google Scholar
Mesulam, M.-M. (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology 28(5):309–25. [SJ]CrossRefGoogle ScholarPubMed
Miller, J. M., Anstis, T. & Templeton, W. B. (1981) Saccadic plasticity: Parametric adaptive control by retinal feedback. Journal of Experimental Psychology: Human Perception and Performance 7:356–66. [aBF]Google ScholarPubMed
Milner, B. (1982) Some cognitive effects of frontal-lobe lesions in man. Philosophical Transactions of the Royal Society of London (Biology) 298:211–26. [aBF]Google ScholarPubMed
Mink, J. W. & Thatch, W. T. (1991a) Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. Journal of Neurophysiology 65(2):273300. [SJ]CrossRefGoogle ScholarPubMed
Mink, J. W. & Thatch, W. T. (1991b) Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. Journal of Neurophysiology 65(2):273300. [SJ]CrossRefGoogle ScholarPubMed
Mondor, T. A. & Bryden, M. P. (1992) On the relation between visual spatial attention and visual field asymmetries. Quarterly Journal of Experimental Psychology 44A:529–55. [TB]CrossRefGoogle Scholar
Morrison, R. E. (1984) Manipulation of stimulus onset delay in reading: Evidence for parallel programming of saccades. Journal of Experimental Psychology: Human Perception and Performance 10:667–82. [VIB, DC, MHF]Google ScholarPubMed
Moschovakis, A. K., Karabelas, A. B. & Highstein, S. M. (1988) Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. Journal of Neurophysiology 60:263302. [aBF]CrossRefGoogle ScholarPubMed
Mountcastle, V., Motter, B., Steinmetz, M. & Sestokas, A. (1987) Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. Journal of Neuroscience 7:2239–55. [aBF]CrossRefGoogle ScholarPubMed
Munoz, D. P. & Wurtz, R. H. (1992) Role of the rostral superior colliculus in active visual fixation and execution of express saccades. Journal of Neurophysiology 67:10001002. [rBF, JMF, RMK, DLR, JAMVG]CrossRefGoogle ScholarPubMed
Murphy, T. D. & Eriksen, C. W. (1987) Temporal changes in the distribution of attention in the visual field in response to precues. Perception if Psychophysics 42:576–86. [TB]CrossRefGoogle ScholarPubMed
Mushiake, H., Inase, M. & Tanji, J. (1991) Neuronal activity in the primate premotor, supplementary and precentral motor cortex during visually guided and internally determined sequential movements. Journal of Neurophysiology 66:705–18. [JDS]CrossRefGoogle ScholarPubMed
Nakayama, K. & Mackeben, M. (1989) Sustained and transient components of focal visual attention. Vision Research 29:1631–47. [TB, KN]CrossRefGoogle ScholarPubMed
Neumann, O. (1992) Theorien der Aufmerksamkeit: Von Metaphern zu Mechanismen. Psychologische Rundschau 43:83101. [ER]Google Scholar
Niemi, P. & Näätänen, R. (1981) Foreperiod and simple reaction time. Psychological Bulletin 89:133–62. [JDS]CrossRefGoogle Scholar
Oakley, M. & Eason, R. (1990) The conjoint influence of spatial selective attention and motor set on very short latency VERs. Neuropsychologia 28:487–97. [aBF]CrossRefGoogle ScholarPubMed
Okada, Y. & Miyamoto, T. (1989) Formation of long-term potentiation in superior colliculus slices from the guinea pig. Neuroscience Letters 96:108–13. [ER]CrossRefGoogle ScholarPubMed
Olson, R. K., Kliegl, R. & Davidson, B. J. (1983) Dyslexic and normal readers' eye movements. Journal of Experimental Psychology: Human Perception and Performance 9:816–25. [aBF]Google ScholarPubMed
Ottes, F. P., Van Gisbergen, J. A. M. & Eggermont, J. J. (1984) Metrics of saccade responses to visual double stimuli: Two different modes. Vision Research 24:1169–79. [JAMVG]CrossRefGoogle ScholarPubMed
Ottes, F. P., Van Gisbergen, J. A. M. & Eggermont, J. J. (1985) Latency dependence of colour-based target vs. nontarget discrimination by the saccadic system. Vision Research 25:849–62. [IAMVG]CrossRefGoogle ScholarPubMed
Ottes, F. P., Van Gisbergen, J. A. M. & Eggermont, J. J. (1987) Collicular involvement in a saccadic colour discrimination task. Experimental Brain Research 66:465–78. [JAMVG]CrossRefGoogle Scholar
Paige, G. D. & Sargent, E. W. (1991) Visually-induced adaptive plasticity in the human vestibulo-ocular reflex. Experimental Brain Research 84:2534. [aBF]CrossRefGoogle ScholarPubMed
Parthasarathy, H. B., Schall, J. D. & Graybiel, A. M. (1992) Distributed by convergent ordering of corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey. Journal of Neuroscience 12:4468–88. [JDS]CrossRefGoogle ScholarPubMed
Pavlidis, G. T. (1981) Do eye movements hold the key to dyslexia? Neuropsychologia 19:5764. [aBF]CrossRefGoogle ScholarPubMed
Pavlidis, G. T. (1985) Eye movement differences between dyslexics, normal, and retarded readers while sequentially fixating digits. American Journal of Optometry and Physiological Optics 62:820–32. [aBF]CrossRefGoogle ScholarPubMed
Perron, C. & Hallett, P. E. (1991) Latencies of eye saccades to coloured targets. Investigative Ophthalmology and Visual Science 32:898. [PEH]Google Scholar
Perry, V. H. & Cowey, A. (1984) Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–37. [aBF]CrossRefGoogle Scholar
Petersen, S. E., Robinson, D. L. & Keys, W. (1985) Pulvinar nuclei of the behaving rhesus monkey: Visual responses and their modulations. Journal of Neurophysiology 54:867–86. [DLR]CrossRefGoogle Scholar
Petersen, S. E., Robinson, D. L. & Morris, J. D. (1987) The contribution of the pulvinar to visual spatial attention. Neuropsychologia 25:97105. [DLR]CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B. & Agid, Y. (1991a) Cortical control of memory-guided saccades in man. Experimental Brain Research 83:607–17. [aBF]CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B. & Agid, Y. (1991b) Cortical control of reflexive visually-guided saccades. Brain 114:1473–78. [RMB, ER]CrossRefGoogle ScholarPubMed
Pollatsek, A., Bolozky, S., Well, A. D. & Rayner, K. (1981) Asymmetries in the perceptual span for Israeli readers. Brain and Language 14:174–80. [JMH]CrossRefGoogle ScholarPubMed
Pöppel, E., Chen, L., Glünder, H., Mitzdorf, U., Ruhnau, E., Schill, K. & von Steinbüchel, N. (1991) Temporal and spatial constraints for mental modelling. In: Frontiers in knowledge-based modelling, ed. Bhatkar, V. & Rege, K.. Narose. [ER]Google Scholar
Pöppel, E., Schill, K. & von Steinbüchel, N. (1990) Multistable states in intrahemispheric learning of a sensorimotor task. NcuroReport 1:6972. [ER]CrossRefGoogle ScholarPubMed
Posner, M. I. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology 32:325. [DC, AWI, RMK, DLR]CrossRefGoogle ScholarPubMed
Posner, M. I., Crippin, P. J., Cohen, A. & Rafal, R. (1986) Speed of covert orienting of attention and express saccades. Paper presented at the meeting of the Psychonomics Society, New Orleans, November. [VIB]Google Scholar
Posner, M. I. & Petersen, S. E. (1990) The attention system of the human brain. Annual Review of Neuroscience 13:2542. [BGB, SJ]CrossRefGoogle ScholarPubMed
Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. (1988) Localization of cognitive operations in the human brain. Science 240:1627–31. [RDW]CrossRefGoogle ScholarPubMed
Posner, M. I., Sandson, J., Dhawan, M. & Shulman, G. L. (1989) Is word recognition automatic? A cognitive-anatomical approach, Journal of Cognitive Neuroscience 1(1):5060. [SJ]CrossRefGoogle ScholarPubMed
Posner, M. I., Walker, J. A., Friedrich, F. J. & Rafal, R. D. (1984) Effects of parietal injury on covert orienting of attention. Journal of Neuroscience 4:1863–74. [aBF, RMB, VIB, SJ]CrossRefGoogle ScholarPubMed
Prablanc, C., Masse, D. & Echallier, J. F. (1978) Error-correcting mechanisms in large saccades. Vision Research 18:551–60. [PEH]CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W. (1989) The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition 32:6597. [RDW]CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W. & Storm, R. W. (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:179–97. [RDW]CrossRefGoogle ScholarPubMed
Rafal, D. R. & Posner, M. I. (1987) Deficits in human visual spatial attention following thalamic lesions. Proceedings of the National Academy of Science 84:7349–53. [DLR]CrossRefGoogle ScholarPubMed
Rashbass, C. (1961) The relationship between saccadic and smooth tracking eye movements. Journal of Physiology 159:326–38. [aBF]CrossRefGoogle ScholarPubMed
Rayner, K. (1985) Do faulty eye movements cause dyslexia? Developmental Neuropsychology 1:315 [MHF]CrossRefGoogle Scholar
Rayner, K., Inhoff, A. W., Morrison, R. E., Slowiaczek, M. L. & Bertera, J. H. (1981) Masking of foveal and parafoveal vision during eye fixations in reading. Journal of Experimental Psychology: Human Perception and Performance 7:167–79. [MHF]Google ScholarPubMed
Rayner, K. & Pollatsek, A. (1989) The psychology of reading. Prentice Hall. [MHF]Google ScholarPubMed
Rayner, K., Well, A. D. & Pollatsek, A. (1980) Asymmetry of the effective visual field in reading. Perception & Psychophysics 27:537–44. [JMH]CrossRefGoogle ScholarPubMed
Remington, R. W. (1980) Attention and saecadic eye movements. Journal of Experimental Psychology: Human Perception and Performance 6:726–44. [DC]Google ScholarPubMed
Reulen, J. P. H. (1984) Latency of visually evoked saecadic eye movements. I. Saccadic latency and the facilitation model. Biological Cybernetics 50:251–62. [aBF. JEA]CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A. & Fendrich, R. (1992) Oculomotor programming and covert orienting: The effects of central versus peripheral precues. Perception & Psychophysics 52:336–44. [PAH-L]CrossRefGoogle Scholar
Reuter-Lorenz, P. A., Hughes, H. C. & Fendrich, R. (1991) The reduction of saccadic latency by prior fixation point offset: An analysis of the “Gap Effect.” Perception & Psychophysics 49:167–75. [aBF, ELC, RMK, PAR-L, FV]CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A., Oonk, H., Barnes, L. & Hughes, H. C. (1993) Response specificity of the Gap Effect depends on the presence of a warning signal. Investigative Ophthalmology & Visual Science 34(Abslract). [PAR-L]Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 25:3140. [JMF]CrossRefGoogle ScholarPubMed
Roberts, W. A., Eaton, S. A. & Salt, T. E. (1991) Excitatory amino acid receptors mediate synaptic responses to visual stimuli in superior colliculus neurons of the rat. Neuroscience Letters 129:161–64. [ER]CrossRefGoogle ScholarPubMed
Robinson, D. A. (1964) The mechanies of saccadic eye movements. Journal of Physiology, London 174:245–64. [PEH]CrossRefGoogle Scholar
Robinson, D. A. & Fuchs, A. F. (1969) Eye movements evoked by stimulation of frontal eye fields. Journal of Neurophysiology 32:637–48. [SDF]CrossRefGoogle ScholarPubMed
Robinson, D. L., Goldberg, M. E. & Stanton, G. B. (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. Journal of Neurophysiology 41:910–32. [aBF, DLR]CrossRefGoogle ScholarPubMed
Robinson, D. L. & Peterson, S. E. (1992) The pulvinar and visual salience. Trends in Neuroscicnce 15:127–32. [DLR]CrossRefGoogle ScholarPubMed
Rogal, L. E. & Fischer, B. (1986) Eye-hand coordination: A model for computing reaction times in a visually guided reach task. Biological Cybernetics 55:263–73. [aBF]CrossRefGoogle Scholar
Rogal, L. E., Reible, G. & Fischer, B. (1985) Reaction times of the eye and the hand of the monkey in a visual reach task. Neuroscicnce Letters 58:127–32. [aBF]CrossRefGoogle Scholar
Ross, L. E. & Ross, S. M. (1980) Saccadic latency and warning signals: Stimulus onset, offset, and change as warning events. Perception & Psychophysics 27:251–57. [aBF, RMK]CrossRefGoogle ScholarPubMed
Ross, S. M. & Ross, L. E. (1981) Saccadic latency and warning signals: Effects of auditory and visual stimulus onset and offset. Perception & Psychophysics 29:429–37. [aBF, RMK]CrossRefGoogle ScholarPubMed
Ruelen, J. P. H. (1984) Latency of visually evoked saccadic eye movements. Biological Cybernetics 50:251–62. [PW]CrossRefGoogle Scholar
Ruhnau, E. & Pöppel, E. (1991) Adirectional temporal zones in quantum physics and brain physiology. International Journal of Theoretical Physics 30:1083–90. [ER]CrossRefGoogle Scholar
Saslow, M. G. (1967a) Effects of components of displacement step stimuli upon latency for saccadic eye movements. Journal of the Optical Society of America 57:1024–29. [PEH]CrossRefGoogle Scholar
Saslow, M. G. (1967b) Latency for saccadic eye movement. Journal of the Optical Society of America 57:1030–33. [aBF]CrossRefGoogle ScholarPubMed
Schall, J. D. (1991a) Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. Journal of Neurophysiology 66:530–58. [JDS]CrossRefGoogle ScholarPubMed
Schall, J. D. (1991b) Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: Comparison with supplementary eye fields. Journal of Neurophysiology 66:559–79. [JDS]CrossRefGoogle ScholarPubMed
Schiller, P. H. (1977) The effect of superior colliculns ablation on saccades elicited by cortical stimulation. Brain Research 122:154–56. [MAS]CrossRefGoogle Scholar
Schiller, P. H., Logothetis, N. K., Charles, E. R. & Lee, K. (1990) The effects of LGN, V4, and MT lesions on visually guided eye movements to stationary targets. Investigative Ophthalmology and Visual Sciences (supplement) 31(4):399. [MAS]Google Scholar
Schiller, P. H., Malpeli, J. G. & Schein, S. J. (1979) Composition of the geniculostriate input to superior colliculus of the rhesus monkey. Journal of Neurophysiology 42:1124–33. [JA]CrossRefGoogle ScholarPubMed
Schiller, P. H. & Sandell, J. H. (1983) Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in rhesus monkeys. Experimental Brain Research 49:381–92. [SDF]CrossRefGoogle Scholar
Schiller, P. H., Sandell, J. H. & Maunsell, J. H. R. (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. Journal of Neurophysiology 57:1033–49. [aBF, JDS, MAS, JAMVG]CrossRefGoogle ScholarPubMed
Schiller, P. H., True, S. D. & Conway, J. L. (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology 44:1175–89. [RMB, MAS]CrossRefGoogle ScholarPubMed
Schlag, J. & Schlag-Rey, M. (1987) Evidence for a supplementary eye field. Journal of Neurophysiology 57:179200. [JDS]CrossRefGoogle ScholarPubMed
Schott, B., Jeannerod, M. & Zahin, M. Z. (1966) L'agnosie spatiale unilaterale: Perturbation en secteur des mecanismes d'exploration et de fixation du regard. Journal Medical (Lyon) 47:169–95. [RMB]Google Scholar
Servan-Schreiber, D., Printz, H. & Cohen, J. D. (1990) A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior. Science 249:892–95. [SDF]CrossRefGoogle ScholarPubMed
Shebilske, W. L. (1976) Extraretinal information in corrective saccades and inflow versus outflow theories of visual direction constancy. Vision Research 16:621–28. [PEH]CrossRefGoogle Scholar
Shepherd, M., Findlay, J. M. & Hockey, R. J. (1986) The relationship between eye movements and spatial attention. Quarterly Journal of Experimental Psychology 38A:475–91. [DC, TJC, MHF, JMH]CrossRefGoogle Scholar
Shibutani, H., Sakata, H. & Hyvarinen, J. (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Experimental Brain Research 55:18. [aBF]CrossRefGoogle ScholarPubMed
Shook, B. L., Schlag-Rey, M. & Schlag, J. (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. Journal of Comparative Neurology 301:618–42. [JDS]CrossRefGoogle ScholarPubMed
Shulman, G. L., Remington, R. W. & McLean, J. P. (1979) Moving attention through visual space. Journal of Experimental Psychology: Human Perception and Performance 5:522–26. [TB]Google ScholarPubMed
Smit, A. C. & Van Gisbergen, J. A. M. (1989) A short-latency transition in saccade dynamics during square-wave tracking and its significance for the differentiation of visually-guided and predictive saceades. Experimental Brain Research 76:6474. [aBF, PEH]CrossRefGoogle Scholar
Sommer, M. A. (submitted) Express saccades elicited during visual scan in the monkey. [MAS]Google Scholar
Sparks, D. L. & Hartwich-Young, R. (1989) The deep layers of the superior colliculus. In: Review of oculomotor research, vol. 3: The neurobiology of saccadic eye movements, ed. Wurtz, R. H. & Goldberg, M. E.. Elsevier. [MAS]Google Scholar
Stein, B. E. & Meredith, M. A. (1990) Multimodal integration: Neural and behavioral solutions for dealing with stimuli from different modalities. Annals of the New York Academy of Science 606:5170. [RMB]CrossRefGoogle Scholar
Steinman, R. M. (1986) The need for an eclectic, rather than systems, approach to the study of the primate oculomotor system. Vision Research 26:101–12. [PEH]CrossRefGoogle Scholar
Steinman, R. M., Cunitz, R., Timberlane, G. & Herman, M. (1967) Voluntary control of microsaccades during maintained monocular fixation. Science 155:1577–79. [VIB]CrossRefGoogle ScholarPubMed
Steinman, R. M., Kowler, E. & Collewijn, H. (1990) New directions for oculomotor research. Vision Research 30:1845–64. [PEH]CrossRefGoogle ScholarPubMed
Tarn, W. J. or Stelmach, L. B. (in press) Viewing behavior: Ocular and attentional disengagement. Perception & Psychophysics. [WJT]Google Scholar
Tanaka, M., Weber, H. & Creutzfeldt, O. D. (1986) Visual properties and spatial distribution of neurones in the visual association area on the prelunate gyrus of the awake monkey. Experimental Brain Research 65:1137. [aBF]CrossRefGoogle ScholarPubMed
Taumer, R., Mie, K. & Kommerell, G. (1972) Three kinds of reaction mechanisms of the human saccadic system. Biokybernetic 4:236–42. [PEH]Google Scholar
Theeuwes, J. (1991) Exogenous and endogenous control of attention: The effect of visual onsets and offsets. Perception & Psychophysics 49:8390. [DC]CrossRefGoogle ScholarPubMed
Tootell, R. B., Hamilton, S. L. & Switkes, E. (1988) Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. Journal of Neuroscience 8:15941609. [aBF]CrossRefGoogle ScholarPubMed
Tsal, V. (1983) Movements of attention across the visual field. Journal of Experimental Psychology: Human Perception and Performance 9:523–30. [TB]Google ScholarPubMed
Ullman, S. (1984) Visual routines. Cognition 18:97159. [ROW]CrossRefGoogle ScholarPubMed
Umilta, C., Riggio, L., Dascola, I. & Rizzolatti, G. (1991) Differential effects of central and peripheral cues on the reorienting of spatial attention. European Journal of Cognitive Psychology 3:247–67. [JMF]CrossRefGoogle Scholar
Underwood, N. R. & McConkie, G. W. (1985) Perceptual span for letter distinctions during reading. Reading Research Quarterly 20:153–62. [JMH]CrossRefGoogle Scholar
Van der Heijden, A. H. C. (1992) Selective attention in vision. Routledge. [HD]Google Scholar
Van Essen, D. C., Anderson, C. H. & Felleman, D. J. (1992) Information processing in the primate visual system: An integrated systems perspective. Science 255:419–23. [ER]CrossRefGoogle ScholarPubMed
Warner, C. B., Juola, J. F. & Koshino, H. (1990) Voluntary allocation versus automatic capture of visual attention. Perception & Psychophysics 48:243–51. [TB]CrossRefGoogle ScholarPubMed
Weber, H., Aiple, F., Fischer, B. & Latanov, A. (1992) Dead zone for express saccades. Experimental Brain Research 89:214–22. [aBF]CrossRefGoogle ScholarPubMed
Weber, H. & Fischer, B. (1990a) Cortical mechanisms for vision revealed by saccadic eye movements in trained rhesus monkeys. In: Vision, memory, and the temporal lobe, ed. Iwai, E.. Elsevier. [aBF]Google Scholar
Weber, H. & Fischer, B. (1990b) Effect of a local ibotenic acid lesion in the visual association area on the prelunate gyrus (area V4) on saccadic reaction times in trained rhesus monkeys. Experimental Brain Research 81:134–39. [aBF]CrossRefGoogle ScholarPubMed
Weber, H. & Fischer, B. (1992) Different modes of visually guided saccades in man determined by reaction time and amplitude. Society for Neuroscience Abstracts 18:214. [PEH]Google Scholar
Weber, H. & Fischer, B. (submitted) Suppression of express saccades: The influence of distractors on saccadic reaction time in man. [rBF]Google Scholar
Weber, H., Fischer, B., Bach, M. & Aiple, F. (1991) Occurrence of express saccades under isoluminance and low contrast luminance conditions. Visual Neuroscience 7:505–10. [aBF, PEH]CrossRefGoogle ScholarPubMed
Weber, H., Latanov, A. & Fischer, B. (1993) Context dependent gain changes of express and regular saccades in man and monkey. Experimental Brain Research 93:335–44. [aBF]CrossRefGoogle Scholar
Wenban-Smith, M. G. & Findlay, J. M. (1991) Express saccades: Is there a separate population in humans? Experimental Brain Research 87:218–22. [aBF, TB, ELC, TJC, JMF, RMK, JDS, MGW-S, WJT, FV, PW]CrossRefGoogle Scholar
Wortis, S. B. & Pfeffer, A. Z. (1948) Unilateral audio-spatial agnosia. Journal of Nercous and Mental Disease 108:181–86. [RMB]CrossRefGoogle Scholar
Wright, M. J., Burns, R. J., Geffen, G. M. & Geffen, L. B. (1990) Covert orientation of visual attention in Parkinson's disease: An impairment in the maintenance of attention. Neuropsychologia 28(2): 151–59. [SJ]CrossRefGoogle ScholarPubMed
Wright, R. D. & Ward, L. M. (1992) The control of visual attention. Unpublished manuscript. [RDW]Google Scholar
Wyman, D. & Steinman, R. M. (1973a) Small step tracking: Implications for the oculomotor “dead zone.” Vision Research 13:2165–72. [aBF]CrossRefGoogle ScholarPubMed
Wyman, D. & Steinman, R. M. (1973b) Latency characteristics of small saccades. Vision Research 13:2173–75. [aBF]CrossRefGoogle ScholarPubMed
Yantis, S. & Johnson, D. N. (1990) Mechanisms of attentional priority. Journal of Experimental Psychology: Human Perception and Performance 16:812–25. [ROW]Google ScholarPubMed
Yantis, S. & Jonides, J. (1984) Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance 10:601–21. [DC]Google ScholarPubMed
Yantis, S. & Jonides, J. (1990) Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance 16:121–34. [DC]Google ScholarPubMed
Young, L. & Stark, L. (1963) Variable feedback experiments testing a sampled data model for eye tracking movements. Institute of Electrical and Electronic Engineers, Transactions in Human Factors in Electronics HFE-4:3851. [PEH]Google Scholar
Zahn, J. R., Abel, L. A. & Dell'Osso, L. F. (1978) Audio-ocular response characteristics. Sensory Processes 2:3237. [RMB]Google ScholarPubMed
Zahn, J. R., Abel, L. A., Dell'Osso, L. F. & Daroff, R. B. (1979) The audio-ocular response: Intersensory delay. Sensory Processes 3:6065. [RMB]Google Scholar
Zambarbieri, D., Schmid, R., Maganes, G. & Prablanc, C. (1982) Saccadic responses evoked by presentation of visual and auditory targets. Experimental Brain Research 47:417–27. [RMB]CrossRefGoogle ScholarPubMed