Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T21:17:29.471Z Has data issue: false hasContentIssue false

Movement vigor: Frameworks, exceptions, and nomenclature

Published online by Cambridge University Press:  30 September 2021

Rory John Bufacchi
Affiliation:
Center for Life Nano- & Neuro-Science, Italian Institute of Technology (IIT), 00161Rome, Italyrory.bufacchi@iit.it, giandomenico.iannetti@iit.itwww.iannettilab.net Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), LondonWC1E 6BT, UK.
Gian Domenico Iannetti
Affiliation:
Center for Life Nano- & Neuro-Science, Italian Institute of Technology (IIT), 00161Rome, Italyrory.bufacchi@iit.it, giandomenico.iannetti@iit.itwww.iannettilab.net Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), LondonWC1E 6BT, UK.

Abstract

Shadmehr and Ahmed cogently argue that vigor of appetitive movements is positively correlated with their value, and that value can therefore be inferred by measuring vigor. Here, we highlight three points to consider when interpreting this account: (1) The correlation between vigor and value is not obligatory, (2) the vigor effect also arises in frameworks other than optimal foraging, and (3) the term vigor can be misinterpreted, thereby affecting rigor.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, W. R. (1952). Design for a brain an introduction to cybernetics. Chapman & Hall LTD.Google Scholar
Byun, S. E., & Sternquist, B. (2012). Here today, gone tomorrow: Consumer reactions to perceived limited availability. Journal of Marketing Theory and Practice, 20(2), 223234. https://doi.org/10.2753/MTP1069-6679200207CrossRefGoogle Scholar
Chomsky, N. (1959). A review of B. F. Skinner's verbal behavior. Language, 35(1), 2658.CrossRefGoogle Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477CrossRefGoogle ScholarPubMed
Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3(MAY), 120. https://doi.org/10.3389/fpsyg.2012.00151CrossRefGoogle ScholarPubMed
Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. J. (2013). The anatomy of choice: Active inference and agency. Frontiers in Human Neuroscience, 7(SEP), 118. https://doi.org/10.3389/fnhum.2013.00598CrossRefGoogle ScholarPubMed
Gardiner, J. M., & Java, R. I. (1993). Recognising and remembering. Theories of Memory. https://doi.org/10.4324/9781315782119-6Google Scholar
Inman, J. J., Peter, A. C., & Raghubir, P. (1997). Framing the deal: The role of restrictions in accentuating deal value. Journal of Consumer Research, 24(1), 6879. https://doi.org/10.1086/209494CrossRefGoogle Scholar
Jocham, G., Hunt, L. T., Near, J., & Behrens, T. E. J. (2012). A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex. Nature Neuroscience, 15(7), 960961. https://doi.org/10.1038/nn.3140CrossRefGoogle ScholarPubMed
Kue, D., Avgar, T., & Fryxell, J. M. (2013). Density- and resource-dependent movement characteristics in a rotifer. Functional Ecology, 27, 323328. https://doi.org/10.1111/1365-2435.12065Google Scholar
Maimaran, M., & Salant, Y. (2019). The effect of limited availability on children's consumption, engagement, and choice behavior. Judgment and Decision Making, 14(1), 7279.Google Scholar
Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53, 139154.CrossRefGoogle Scholar
Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology, 191(3), 507520. https://doi.org/10.1007/s00213-006-0502-4CrossRefGoogle ScholarPubMed
Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 305323. https://doi.org/10.1037/a0013626Google ScholarPubMed
Parr, T., & Friston, K. J. (2017). The active construction of the visual world. Neuropsychologia, 104(July), 92101. https://doi.org/10.1016/j.neuropsychologia.2017.08.003CrossRefGoogle ScholarPubMed
Parr, T., & Friston, K. J. (2018). Active inference and the anatomy of oculomotion. Neuropsychologia, 111(October 2017), 334343. https://doi.org/10.1016/j.neuropsychologia.2018.01.041CrossRefGoogle ScholarPubMed
Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Potential threat attracts attention and interferes with voluntary saccades. Emotion (Washington, D.C.), 15(3), 329338. https://doi.org/10.1037/emo0000041CrossRefGoogle ScholarPubMed
Seo, C., Guru, A., Jin, M., Ito, B., Sleezer, B. J., Ho, Y. Y., … Warden, M. R. (2019). Intense threat switches dorsal raphe serotonin neurons to a paradoxical operational mode. Science (New York, N.Y.), 363(6426), 539542. https://doi.org/10.1126/science.aau8722CrossRefGoogle ScholarPubMed