No CrossRef data available.
Article contents
Moving backward through perceptual compensation
Published online by Cambridge University Press: 14 May 2008
Abstract
In the target article Nijhawan speculates that visual perceptual mechanisms compensate for neural delays so that moving objects may be perceived closer to their physical locations. However, the vast majority of published psychophysical data are inconsistent with this speculation.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright ©Cambridge University Press 2008
References
Attneave, F. (1954) Informational aspects of visual processing. Psychological Review 61:183–93.CrossRefGoogle Scholar
Barlow, H. B. (1961a) Possible principles underlying the transformations of sensory messages. In: Sensory communication, ed. Rosenblith, W. A..Wiley.Google Scholar
Barlow, H. B. (1961b) Three points about lateral inhibition. In: Sensory communication, ed. Rosenblith, W. A., pp. 782–86. MIT Press.Google Scholar
Barlow, H. B. (1961c) The coding of sensory messages. In: Current problems in animal behaviour, ed. Thorpe, W. H. & Zangwill, O. L., pp. 331–60. Cambridge University Press.Google Scholar
Bedell, H. E. & Lott, L. A. (1996) Suppression of motion-produced smear during smooth pursuit eye movements. Current Biology 6:1032–34.CrossRefGoogle ScholarPubMed
Chen, S., Bedell, H. E. & Öğmen, H. (1995) A target in real motion appears blurred in the absence of other proximal moving targets. Vision Research 35:2315–28.CrossRefGoogle ScholarPubMed
Grzywacz, N. M., Watamaniuk, S. N. J. & McKee, S. P. (1995) Temporal coherence theory for the detection and measurement of visual motion. Vision Research 35:3183–203.CrossRefGoogle ScholarPubMed
Hubel, D. H. & Livingstone, M. S. (1987) Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7:3378–415.CrossRefGoogle ScholarPubMed
Kafalıgönül, H., Patel, S. S., Öğmen, H., Bedell, H. E. & Purushothaman, G. (in press) Perceptual asynchronies and the dual-channel differential latency hypothesis. In: Space and time in perception and action, ed. Nijhawan, R. & Khurana, B.. Cambridge University Press.Google Scholar
Maus, G. W. & Nijhawan, R. (2006) Forward displacements of fading objects in motion: The role of transient signals in perceiving position. Vision Research 46(26):4375–81.CrossRefGoogle ScholarPubMed
Murakami, I. (2001) A flash-lag effect in random motion. Vision Research 41:3101–19.CrossRefGoogle ScholarPubMed
Nijhawan, R. (1994) Motion extrapolation in catching. Nature 370(6487):256–57.CrossRefGoogle ScholarPubMed
Öğmen, H., Patel, S. S., Bedell, H. E. & Camuz, K. (2004) Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Research 44:2109–28.CrossRefGoogle ScholarPubMed
Patel, S. S., Öğmen, H., Bedell, H. E. & Sampath, V. (2000) Flash-lag effect: Differential latency, not postdiction. Science 290:1051.CrossRefGoogle Scholar
Purushothaman, G., Patel, S. S., Bedell, H. E. & Öğmen, H. (1998) Moving ahead through differential visual latency. Nature 396(6710):424.CrossRefGoogle ScholarPubMed
Williams, J. M. & Lit, A. (1983) Luminance-dependent visual latency for the Hess effect, the Pulfrich effect, and simple reaction time. Vision Research 23(2):171–79.CrossRefGoogle ScholarPubMed
Wilson, J. A. & Anstis, S. M. (1969) Visual delay as a function of luminance. American Journal of Psychology 82:350–58.CrossRefGoogle ScholarPubMed