Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T15:30:45.717Z Has data issue: false hasContentIssue false

Moving fast and seeing slow? The visual consequences of vigorous movement

Published online by Cambridge University Press:  30 September 2021

Martin Rolfs
Affiliation:
Department of Psychology, Humboldt-Universität zu Berlin, Berlin10099, Germanymartin.rolfs@hu-berlin.de; sven.ohl@hu-berlin.de; http://www.rolfslab.de Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
Sven Ohl
Affiliation:
Department of Psychology, Humboldt-Universität zu Berlin, Berlin10099, Germanymartin.rolfs@hu-berlin.de; sven.ohl@hu-berlin.de; http://www.rolfslab.de

Abstract

In active agents, sensory and motor processes form an inevitable bond. This wedding is particularly striking for saccadic eye movements – the prime target of Shadmehr and Ahmed's thesis – which impose frequent changes on the retinal image. Changes in movement vigor (latency and speed), therefore, will need to be accompanied by changes in visual and attentional processes. We argue that the mechanisms that control movement vigor may also enable vision to attune to changes in movement kinematics.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arcizet, F., & Krauzlis, R. J. (2018). Covert spatial selection in primate basal ganglia. PLoS Biology, 16(10), e2005930.CrossRefGoogle ScholarPubMed
Baldassi, S., & Simoncini, C. (2011). Reward sharpens orientation coding independently of attention. Frontiers in Neuroscience, 5, 13.CrossRefGoogle ScholarPubMed
Balsdon, T., Schweitzer, R., Watson, T. L., & Rolfs, M. (2018). All is not lost: Post-saccadic contributions to the perceptual omission of intra-saccadic streaks. Consciousness and Cognition, 64, 1931.CrossRefGoogle ScholarPubMed
Campbell, F. W., & Wurtz, R. H. (1978). Saccadic omission: Why we do not see a grey-out during a saccadic eye movement. Vision Research, 18(10), 12971303.CrossRefGoogle ScholarPubMed
Castet, E., Jeanjean, S., & Masson, G. S. (2002). Motion perception of saccade-induced retinal translation. Proceedings of the National Academy of Sciences, 99(23), 1515915163.CrossRefGoogle ScholarPubMed
Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147153.CrossRefGoogle ScholarPubMed
Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 18271837.CrossRefGoogle ScholarPubMed
Duyck, M., Collins, T., & Wexler, M. (2016). Masking the saccadic smear. Journal of Vision, 16(10), 113.CrossRefGoogle ScholarPubMed
Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion (Washington, D.C.), 7(3), 668674.CrossRefGoogle ScholarPubMed
Failing, M., & Theeuwes, J. (2018). Selection history: How reward modulates selectivity of visual attention. Psychonomic Bulletin & Review, 25(2), 514538.CrossRefGoogle ScholarPubMed
Jonikaitis, D., & Deubel, H. (2011). Independent allocation of attention to eye and hand targets in coordinated eye-hand movements. Psychological Science, 22(3), 339347.CrossRefGoogle ScholarPubMed
Jonikaitis, D., & Theeuwes, J. (2013). Dissociating oculomotor contributions to spatial and feature-based selection. Journal of Neurophysiology, 110(7), 15251534.CrossRefGoogle ScholarPubMed
Kroell, L. M., & Rolfs, M. (2021). The peripheral sensitivity profile at the saccade target reshapes during saccade preparation, Cortex, 139, 1226. https://doi.org/10.1016/j.cortex.2021.02.021.CrossRefGoogle Scholar
Land, M. F. (2004). The coordination of rotations of the eyes, head and trunk in saccadic turns produced in natural situations. Experimental Brain Research, 159(2), 151160.CrossRefGoogle ScholarPubMed
Li, H. H., Barbot, A., & Carrasco, M. (2016). Saccade preparation reshapes sensory tuning. Current Biology, 26(12), 15641570.CrossRefGoogle ScholarPubMed
Ohl, S., Kuper, C., & Rolfs, M. (2017). Selective enhancement of orientation tuning before saccades. Journal of Vision, 17(13), 111.CrossRefGoogle ScholarPubMed
Ostendorf, F., Fischer, C., Finke, C., & Ploner, C. J. (2007). Perisaccadic compression correlates with saccadic peak velocity: Differential association of eye movement dynamics with perceptual mislocalization patterns. Journal of Neuroscience, 27(28), 75597563.CrossRefGoogle ScholarPubMed
Rayner, K. (2009). The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 14571506.CrossRefGoogle Scholar
Rolfs, M. (2015). Attention in active vision: A perspective on perceptual continuity across saccades. Perception, 44(8–9), 900919.CrossRefGoogle ScholarPubMed
Rolfs, M., & Carrasco, M. (2012). Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. Journal of Neuroscience, 32(40), 1374413752a.CrossRefGoogle ScholarPubMed
Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252256.CrossRefGoogle ScholarPubMed
Rolfs, M., & Szinte, M. (2016). Remapping attention pointers: Linking physiology and behavior. Trends in Cognitive Sciences, 20(6), 399401.CrossRefGoogle ScholarPubMed
Rucci, M., Ahissar, E., & Burr, D. (2018). Temporal coding of visual space. Trends in Cognitive Sciences, 22(10), 883895.CrossRefGoogle ScholarPubMed
Scholes, C., McGraw, P. V., & Roach, N. W. (2021). Learning to silence saccadic suppression. Proceedings of the National Academy of Sciences, 118(6), e2012937118.CrossRefGoogle ScholarPubMed
Schweitzer, R., & Rolfs, M. (2020). Intra-saccadic motion streaks as cues to linking object locations across saccades. Journal of Vision, 20(4):17, 124.CrossRefGoogle ScholarPubMed
Schweitzer, R., & Rolfs, M. (in press). Intra-saccadic motion streaks jump-start gaze correction. bioRxiv. https://doi.org/10.1101/2020.04.30.070094.Google Scholar
Serences, J. T. (2008). Value-based modulations in human visual cortex. Neuron, 60(6), 11691181.CrossRefGoogle ScholarPubMed
van Heusden, E., Rolfs, M., Cavanagh, P., & Hogendoorn, H. (2018). Motion extrapolation for eye movements predicts perceived motion-induced position shifts. Journal of Neuroscience, 38, 82438250.CrossRefGoogle ScholarPubMed
Watson, T. L., & Krekelberg, B. (2009). The relationship between saccadic suppression and perceptual stability. Current Biology, 19(12), 10401043.CrossRefGoogle ScholarPubMed
White, A. L., Rolfs, M., & Carrasco, M. (2013). Adaptive deployment of spatial and feature-based attention before saccades. Vision Research, 85, 2635.CrossRefGoogle ScholarPubMed
Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 20702089.CrossRefGoogle ScholarPubMed