Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T13:43:40.652Z Has data issue: false hasContentIssue false

Ownership psychology as a “cognitive cell” adaptation: A minimalist model of microbial goods theory

Published online by Cambridge University Press:  10 October 2023

Kevin B. Clark*
Affiliation:
Cures Within Reach, Chicago, IL, USA kbclarkphd@yahoo.com; www.linkedin.com/pub/kevin-clark/58/67/19a; https://access-ci.org Felidae Conservation Fund, Mill Valley, CA, USA Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, USA Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA, USA Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA, USA Frontier Development Lab, NASA Ames Research Center, Mountain View, CA, USA SETI Institute, Mountain View, CA, USA Peace Innovation Institute, Netherlands & Stanford University, Palo Alto, CA, USA Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, Berlin, Germany Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, USA

Abstract

Microbes perfect social interactions with intuitive logics and goal-directed reciprocity. These multilevel, cognition-resembling adaptations in Dictyostelid cellular molds enable individual-to-group viability through public/private bacterial farming and dynamic marketspaces. Like humans and animals, Dictyostelid livestock-ownership depends on environmental sensing, cooperation, and competition. Moreover, social-norm policing of cosmopolitan colonies coordinates farmer decisions, phenotypes, and ownership identities with bacteria herding, privatization, and consumption.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ben-Jacob, E., Becker, I., Shapira, Y., & Levine, H. (2004). Bacterial linguistic communication and social intelligence. Trends in Microbiology, 12, 366372.CrossRefGoogle ScholarPubMed
Brock, D. A., Douglas, T. E., Queller, D. C., & Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. Nature, 469, 393396.CrossRefGoogle Scholar
Brock, D. A., Read, S., Bozhchenko, A., Queller, D. C., & Strassmann, J. E. (2013). Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nature Communications, 4, 2385.CrossRefGoogle ScholarPubMed
Chung, H.-K., Alós-Ferrer, C., & Tobler, P. N. (2021). Conditional valuation for combinations of goods in primates. Philosophical Transactions of the Royal Society B, 376, 20190669.CrossRefGoogle ScholarPubMed
Clark, K. B. (2010 a). Origins of learned reciprocity in solitary ciliates searching grouped “courting” assurances at quantum efficiencies. BioSystems, 99(1), 2741.CrossRefGoogle ScholarPubMed
Clark, K. B. (2010 b). On classical and quantum error-correction in ciliate mate selection. Communicative & Integrative Biology, 3(4), 374378.CrossRefGoogle ScholarPubMed
Clark, K. B. (2012). Social biases determine spatiotemporal sparseness of ciliate mating heuristics. Communicative & Integrative Biology, 5(1), 311.CrossRefGoogle ScholarPubMed
Clark, K. B. (2013). Ciliates learn to diagnose and correct classical error syndromes in mating strategies. Frontiers in Microbiology, 4, 229.CrossRefGoogle ScholarPubMed
Clark, K. B. (2015). Insight and analysis problem solving in microbes to machines. Progress in Biophysics and Molecular Biology, 119, 183193.CrossRefGoogle ScholarPubMed
Clark, K. B. (2019). Unpredictable homeodynamic and ambient constraints on irrational decision making of aneural and neural foragers. Behavioral and Brain Sciences, 42, e40.CrossRefGoogle ScholarPubMed
Clark, K. B. (2021 a). Eco-evolutionary origins, nature, and impact of paired reproduction in Earth and possible extraterrestrial microbiota. Bulletin of the American Astronomical Society, 53(4), 24.Google Scholar
Clark, K. B. (2021 b). Ultrasociality, goods theory, and primitive agriculture in cosmopolitan Earth and putative extraterrestrial microbial symbionts. Bulletin of the American Astronomical Society, 53(4), 26.Google Scholar
Clark, K. B. (2021 c). Quantum decision corrections for the neuroeconomics of irrational movement control and goal attainment. Behavioral and Brain Sciences, 44, e127.CrossRefGoogle ScholarPubMed
Crespi, B. J. (2001). The evolution of social behavior in microorganisms. Trends in Ecology and Evolution, 16, 178183.CrossRefGoogle ScholarPubMed
Dunny, G. M., Brickman, T. J., & Dworkin, M. (2008). Multicellular behavior in bacteria: Communication, cooperation, competition and cheating. BioEssays, 30(4), 296298.CrossRefGoogle ScholarPubMed
Hellingwerf, K. J. (2005). Bacterial observations: A rudimentary form of intelligence? Trends in Microbiology, 13, 152158.CrossRefGoogle ScholarPubMed
Kagel, J., Battalio, R., & Green, L. (1995). Economic choice theory: An experimental analysis of animal behavior. Cambridge University Press.CrossRefGoogle Scholar
Lyon, P. (2015). The cognitive cell: Bacterial behavior reconsidered. Frontiers in Microbiology, 6, 264.CrossRefGoogle ScholarPubMed
Margulis, L. (2001). The conscious cell. Annals of the New York Academy of Sciences, 929, 5570.CrossRefGoogle ScholarPubMed
Marsh, B., & Kacelnik, A. (2002). Framing effects and risky decisions in starlings. Proceedings of the National Academy of Sciences USA, 99, 33523355.CrossRefGoogle ScholarPubMed
Pion, M., Spangenberg, J. E., Simon, A., Bindschedler, S., Flury, C., Chatelain, A., … Junier, P. (2013). Bacterial farming by the fungus Morchella crassipes. Proceedings of the Royal Society B, 280, 20132242.CrossRefGoogle ScholarPubMed
Ross-Gillespie, A., & Kümmerli, R. (2014). Collective decision-making in microbes. Frontiers in Microbiology, 5, 54.CrossRefGoogle ScholarPubMed
Schultz, W., Stauffer, W. R., & Lak, A. (2017). The phasic dopamine signal maturing: From reward via behavioural activation to formal economic utility. Current Opinion in Neurobiology, 43, 139148.CrossRefGoogle ScholarPubMed
Stallforth, P., Brock, D. A., Cantley, A. M., Tian, X., Queller, D. C., Strassmann, J. E., & Clardy, J. (2013). A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proceedings of the National Academy of Science USA, 110(36), 1452814533.CrossRefGoogle ScholarPubMed
Tarnita, C. E. (2017). The ecology and evolution of social behaviors in microbes. Journal of Experimental Biology, 220, 1824.CrossRefGoogle ScholarPubMed
Thutupalli, S., Uppaluri, S., Constable, G. W. A., Levin, S. A., Stone, H. A., Tarnita, C. E., & Brangwynne, C. P. (2017). Farming and public goods production in Caenorhabditis elegans populations. Proceedings of the National Academy of Sciences USA, 114(9), 22892294.CrossRefGoogle ScholarPubMed
Velicer, G. J., & Vos, M. (2009). Sociobiology of the myxobacteria. Annual Review in Microbiology, 63, 599623.10.1146/annurev.micro.091208.073158CrossRefGoogle ScholarPubMed
Werner, G. D. A., Strassmann, J. E., Ivens, A. B. F., Engelmoer, D. J. P., Verbruggen, E., Queller, D. C., … Kiers, E. T. (2014). Evolution of microbial markets. Proceedings of the National Academy of Sciences USA, 111(4), 12371244.CrossRefGoogle ScholarPubMed