Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T10:22:59.291Z Has data issue: false hasContentIssue false

A study of the science of taste: On the origins and influence of the core ideas

Published online by Cambridge University Press:  08 April 2008

Robert P. Erickson
Affiliation:
Departments of Psychology and Neurosciences, and Neurobiology, Duke University, Durham, NC 27708. eric@psych.duke.edu

Abstract

Our understanding of the sense of taste is largely based on research designed and interpreted in terms of the traditional four “basic” tastes: sweet, sour, salty, and bitter, and now a few more. This concept of basic tastes has no rational definition to test, and thus it has not been tested. As a demonstration, a preliminary attempt to test one common but arbitrary psychophysical definition of basic tastes is included in this article; that the basic tastes are unique in being able to account for other tastes. This definition was falsified in that other stimuli do about as well as the basic words and stimuli. To the extent that this finding might show analogies with other studies of receptor, neural, and psychophysical phenomena, the validity of the century-long literature of the science of taste based on a few “basics” is called into question. The possible origins, meaning, and influence of this concept are discussed. Tests of the model with control studies are suggested in all areas of taste related to basic tastes. As a stronger alternative to the basic tradition, the advantages of the across-fiber pattern model are discussed; it is based on a rational data-based hypothesis, and has survived attempts at falsification. Such “population coding” has found broad acceptance in many neural systems.

Type
Main Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, E. D. (1955) The action of the mammalian olfactory organ. The Seman Lecture. Journal of Laryngology and Otology 70:114.CrossRefGoogle Scholar
Aldenderfer, M. S. & Blashfield, R. K. (1984) Cluster analysis: Quantitative applications in the social sciences, ed. Sullivan, J. L. & Niemi, R. G.. Sage University Papers, Sage Publications.CrossRefGoogle Scholar
Amrein, H. & Bray, S. (2003) Bitter-sweet solution in taste transduction. Cell 112:283–87.CrossRefGoogle ScholarPubMed
Bartoshuk, L. M. (1988) Taste. In: Stevens' handbook of experimental psychology, vol. 1, 2nd edition, ed. Atkinson, R. C., Herrnstein, R. J., Lindzey, G. & Luce, R. D., pp. 461–99. Wiley.Google Scholar
Bear, M. F., Connors, B. W. & Paradiso, M. A. (1996) Neurosciences: Exploring the brain Williams and Wilkins.Google Scholar
Beidler, L. M. (1974) The chemical senses: Gustation and olfaction. In: Medical physiology, 13th edition, ed. Mountcastle, V. B., pp. 536–50. Mosby.Google Scholar
Bernstein, D. A., Pener, L. A., Clarke-Stewart, A. & Roy, E. J. (2006) Psychology Houghton Mifflin.Google Scholar
Birch, G. G. (1977) Taste properties of sugar molecules. In: Proceedings of the Sixth International Symposium on Olfaction and Taste, ed. Le Magnen, J. & Mac Leod, P., pp. 2733. Information Retrieval.Google Scholar
Boring, E. G. (1942) Sensation and perception in the history of experimental psychology Appleton-Century-Crofts.Google Scholar
Boughter, J. T. Jr., & Smith, D. V. (1998) Amiloride blocks acid responses in NaCl-best gustatory neurons of the hamster solitary nucleus. Journal of Neurophysiogy 80:1362–72.CrossRefGoogle ScholarPubMed
Boughter, J. T. Jr., St. John, S. J. & Smith, D. V. (1999) Neural representation of the taste of NaCl and KCl in gustatory neurons of the hamster solitary nucleus. Journal of Neurophysiology 81:2636–46.CrossRefGoogle ScholarPubMed
Brasser, S. M, Mozhui, K. & Smith, D. V. (2005) Differential covariation in taste responsiveness to bitter stimuli in rats. Chemical Senses 30:793–99.CrossRefGoogle ScholarPubMed
Brillat-Savarin, J. A. (1886/1971) The physiology of taste, p. 38. North Point Press. Translated by Fisher, M. F. K., The Heritage Press (1949).Google Scholar
Buck, L. B. (2004) Olfactory receptors and odor coding in mammals. Nutrition Review 62:S184–88; S224–41.CrossRefGoogle ScholarPubMed
Buhusi, C. V. (2000) The across-fiber pattern theory and fuzzy logic: A matter of taste. Physiology and Behavior 69:97106.CrossRefGoogle ScholarPubMed
Caicedo, A., Kim, K.-N. & Roper, S. D. (2002) Individual mouse taste cells respond to multiple chemical stimuli. Journal of Physiology 544:501–09.CrossRefGoogle ScholarPubMed
Caicedo, A. & Roper, S. D. (2001) Taste receptor cells that discriminate between bitter stimuli. Science 291:1557–60.CrossRefGoogle ScholarPubMed
Caprio, J. (1978) Olfaction and taste in the channel catfish: An electrophysiological study of the responses to amino acids and derivatives. Journal of Comparative Physiology, A 123:375–81.CrossRefGoogle Scholar
Chale-Rush, A., Burgess, J. R. & Mattes, R. D. (2007) Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chemical Senses 10:1093.Google Scholar
Chandrashekar, J., Hoon, M. A., Ryba, J. P. & Zucker, C. S. (2006) The receptors and cells for mammalian taste. Nature 444:288–94.CrossRefGoogle ScholarPubMed
Covey, E. (2000) Neural population coding and auditory temporal pattern analysis. Physiology and Behavior 69:211–20.CrossRefGoogle ScholarPubMed
Critchtey, H. D. & Rolls, E. T. (1996) Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chemical Senses 21:135–45.Google Scholar
Dahl, M., Erickson, R. P. & Simon, S. A. (1997) Neural responses to bitter compounds in rats. Brain Research 756:2234.CrossRefGoogle ScholarPubMed
Di Lorenzo, P. M. (1986) Neural and behavioral responsivity to ethyl alcohol as a tastant. Alcohol 3:5561.CrossRefGoogle ScholarPubMed
Doetsch, G. S. & Erickson, R. P. (1970) Synaptic processing of taste-quality information in the nucleus solitarius of the rat. Journal of Neurophysiology 33:490507.CrossRefGoogle Scholar
Eggers, S. C., Acree, T. E. & Shallenberger, R. S. (2000) Sweetness chemoreception theory and sweetness transduction. Food Chemistry 68:4549.CrossRefGoogle Scholar
Erickson, R. P. (1963) Sensory neural patterns and gustation. In: Olfaction and taste, vol. I, ed. Zotterman, Y., pp. 205–13. Pergamon.CrossRefGoogle Scholar
Erickson, R. P. (1967) Neural coding of taste quality. In: The chemical senses and nutrition, ed. Kare, M. & Maller, O., pp. 313–27. Johns Hopkins Press.Google Scholar
Erickson, R. P. (1968) Stimulus coding in topographic and nontopographic afferent modalities: On the significance of the activity of individual sensory neurons. Psychology Review 75:447–65.CrossRefGoogle ScholarPubMed
Erickson, R. P. (1974) Parallel “population” neural coding in feature extraction. In: The neurosciences: Third study program Cambridge, ed. Schmitt, F. O. & Worden, F. G., pp. 155–69. MIT Press.Google Scholar
Erickson, R. P. (1977) The role of “primaries” in taste research. In: Olfaction and taste, vol. 6, ed. Le Magnen, J. & MacLeod, P., pp. 369–76. Information Retrieval.Google Scholar
Erickson, R. P. (1978) Common properties of sensory systems. In: Handbook of behavioral neurobiology, vol. 1, ed. Masterton, R. B.. Plenum.Google Scholar
Erickson, R. P. (1982a) Studies on the perception of taste: Do primaries exist? Physiology and Behavior 28:5762.CrossRefGoogle ScholarPubMed
Erickson, R. P. (1982b) The “across-fiber pattern” theory: An organizing principle for molar neural function. In: Contributions to sensory physiology, vol 7, ed. Neff, W. D., pp. 79110. Academic Press.Google Scholar
Erickson, R. P. (1984a) Ohrwall, Henning and von Skramlik: The foundations of the four primary positions in taste. Neuroscience and Biobehavioral Reviews 8:233–41.CrossRefGoogle Scholar
Erickson, R. P. (1984b) On the neural bases of behavior. American Scientist 233–41.Google Scholar
Erickson, R. P. (1985a) Definitions: A matter of taste. In: Taste, olfaction and the central nervous system, ed. Pfaff, D., pp. 129–50. Rockefeller University Press.Google Scholar
Erickson, R. P. (1985b) Grouping in the chemical senses. Chemical Senses 10:333–40.CrossRefGoogle Scholar
Erickson, R. P. (1986) A neural metric. Neuroscience and Biobehavioral Reviews 10:377–86.CrossRefGoogle ScholarPubMed
Erickson, R. P. (2000) The evolution of neural coding ideas in the chemical senses. Physiology and Behavior 69:313.CrossRefGoogle ScholarPubMed
Erickson, R. P. (2001) The evolution and implications of population and modular neural coding ideas. Progress in Brain Research 130:929.CrossRefGoogle ScholarPubMed
Erickson, R. P. & Covey, E. (1980) On the singularity of taste sensations: What is a taste primary? Physiology and Behavior 25:527–33.CrossRefGoogle ScholarPubMed
Erickson, R. P., Covey, E. & Doetsch, G. S. (1980) Neuron and stimulus typologies in the rat gustatory system. Brain Research 196:513–19.CrossRefGoogle ScholarPubMed
Erickson, R. P., Di Lorenzo, P. M., & Woodbury, M. A. (1994) Classification of taste responses in brain stem: Membership in fuzzy sets. Journal of Neurophysiology 71:2139–50.CrossRefGoogle ScholarPubMed
Erickson, R. P., Doetsch, G. S. & Marshall, D. A. (1965) The gustatory neural response function. Journal of General Physiology 49:247–63.CrossRefGoogle ScholarPubMed
Erickson, R. P., Priolo, C. V., Warwick, Z. S. & Schiffman, S. S. (1990) Synthesis of tastes other than the ‘primaries’: Implications for neural coding theories and the concept of ‘suppression.’ Chemical Senses 15:495504.CrossRefGoogle Scholar
Erickson, R. P., Rodgers, J. L. & Sarle, W. S. (1993) Statistical analysis of neural organization. Journal of Neurophysiology 70:22892300.CrossRefGoogle Scholar
Erickson, R. P. & Schiffman, S. S. (1975) The chemical senses: A systematic approach. In: Handbook of psychobiology, ed. Gazzaniga, M. S. & Blakemore, C., pp. 393426. Academic Press.CrossRefGoogle Scholar
Erickson, R. P., Schiffman, S. S., Doetsch, G. S., Di Lorenzo, P. M. & Woodbury, M. A. (1995) A fuzzy set approach to the organization of the gustatory system. Primary Sensory Neuron 1:6580.Google Scholar
Erickson, R. P., Woodbury, M. A. & Doetsch, G. S. (1996) Distributed neural coding based on fuzzy logic. Information Sciences 95:103–12.CrossRefGoogle Scholar
Frank, M. A. (1974) The classification of mammalian afferent taste nerve fibers. Chemical. Senses and Flavor 1:5360.CrossRefGoogle Scholar
Frank, M. A. (2000) Neuron types, receptors, behavior, and taste quality. Physiology and Behavior 69:5362.CrossRefGoogle ScholarPubMed
Ganchrow, J. R. & Erickson, R. P. (1970) Neural correlates of gustatory intensity and quality. Journal of Neurophysiology 33:768–83.CrossRefGoogle ScholarPubMed
Geldard, F. A. (1964) The sense of taste. In: The human senses, pp. 295323. Wiley.Google Scholar
Geran, L. C. & Travers, S. P. (2006) Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. Journal of Neurophysiology 96:2513–27.CrossRefGoogle ScholarPubMed
Gilbertson, T. A. (2002) Hypoosmotic stimuli activate a chloride conductance in rat taste cells. Chemical Senses 27:383–94.CrossRefGoogle ScholarPubMed
Gilbertson, T. A., Boughter, J. D., Zhang, H. & Smith, D. V. (2001) Distribution of gustatory sensitivities in rat taste cells: Whole-cell responses to apical chemical stimulation. Journal of Neuroscience 21:4931–41.CrossRefGoogle ScholarPubMed
Gilbertson, T. A., Fontenot, D. T., Liu, L., Zhang, H. & Monroe, W. T. (1997) Fatty acid modulation of K+ channels in taste receptor cells: Gustatory cues for dietary fat. American Journal of Cell Physiology 272:C1203–10.CrossRefGoogle ScholarPubMed
Gould, S. J. (1994) The persistently flat earth. Natural History 3:1219.Google Scholar
Graham, R. B. (1990) Physiological psychology Wadsworth.Google Scholar
Halpern, B. P. (2002a) Taste. In: Stevens' handbook of experimental psychology, vol. 1: Sensation and perception, 3rd edition, ed. Pashler, H. & Yantis, S., pp. 653–90. Wiley.Google Scholar
Halpern, B. P. (2002b) What's in a name? Are MSG and umami the same? Chemical Senses 27:845–46.CrossRefGoogle Scholar
Hanig, D. P. (1901) Zur psychophysik des geschmackssinnes. Philosophische Studien 17:576623.Google Scholar
Henning, H. (1916) Die qualitatenreihe des geschmacks (The quality series of taste). Zeitschrift Psychologie 74:203–19. (See Erickson 1984a for a translation).Google Scholar
Herness, S. (2000) Coding in taste receptor cells: The early years of intracellular recordings. Physiology and Behavior 69:1727.CrossRefGoogle ScholarPubMed
Ishii, R. & O'Mahoney, M. (1987) Taste sorting and naming: Can taste concepts be misrepresented by traditional psychophysical labelling systems? Chemical Senses 12:3751.CrossRefGoogle Scholar
James, W. (1890) Principles of psychology, vol. I: The sources of error in psychology, p. 194. Henry Holt.Google Scholar
Kandel, E. R., Schwartz, J. H. & Jessell, T. M. (1991) Smell and taste: The chemical senses. In: Principles of neural science, 3rd edition, ed. Dodd, J. & Castellucci, V. F., pp. 512–29. Elsevier/North-Holland.Google Scholar
Kimble, G. A. (1996) Psychology: The hope of a science, p. 137. MIT Press.Google Scholar
Kruskal, J. B. & Wish, M. (1978) Cluster analysis: Quantitative applications in the social sciences, ed. Uslander, E. M.. Sage University Papers, Sage Publications.Google Scholar
Lashley, K. S. (1931) Mass action in cerebral function. Science 73:245–54.CrossRefGoogle ScholarPubMed
Lawless, H. T., Stevens, D. A., Chapman, K. W. & Kurtz, A. (2005) Metallic taste from electrical and chemical stimulation. Chemical Senses 30:185–94.CrossRefGoogle ScholarPubMed
Lemon, C. H. & Smith, D. V. (2005) Neural representation of bitter taste in the nucleus of the solitary tract. Journal of Neurophysiology 94(6):3719–29.CrossRefGoogle ScholarPubMed
Lemon, C. H. & Smith, D. V. (2006) Influence of response variability on the coding performance of central gustatory neurons. Journal of Neuroscience 26:7433–43.CrossRefGoogle ScholarPubMed
Malnic, B., Hirono, J., Sato, T. & Buck, L. B. (1999) Combinatorial receptor codes for odors. Cell 96:713–23.CrossRefGoogle ScholarPubMed
Mattes, R. D. (2005) Fat taste and lipid metabolism in humans. Physiology and Behavior 86:691–97.CrossRefGoogle ScholarPubMed
McBurney, D. H. (1974) Are there primary tastes for man? Chemical Senses and Flavor 1:1728.CrossRefGoogle Scholar
McBurney, D. H. (1978) Psychophysical dimensions and perceptual analyses of taste. In: Handbook of perception, vol VIA, ed. Carterette, E. C. & Friedman, M. P.. Academic Press.Google Scholar
McBurney, D. H. & Gent, J. F. (1979) On the nature of taste qualities. Psychology Bulletin 86:151–67.CrossRefGoogle ScholarPubMed
McCormack, D. N., Clyburn, V. L. & Pittman, D. W. (2006) Detection of free fatty acids following a conditioned taste aversion in rats. Physiology and Behavior 87:582–94.CrossRefGoogle ScholarPubMed
Miller, G. A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63:8197.CrossRefGoogle ScholarPubMed
Moncrieff, R. W. (1956) The chemical senses Wiley.Google Scholar
Mueller, K. L., Hoon, M. A., Erlenbach, I., Chandrashekar, J., Zuker, C. S. & Ryba, N. J. (2005) The receptors and coding logic for bitter taste. Nature 434(7030):225–29. Available at: http://www.nature.com/nature/journal/v434/n7030/abs/nature03352.html.CrossRefGoogle Scholar
O'Mahony, M., Atassi-Sheldon, S., Rothman, L. & Murphy-Ellison, T. (1983) Relative singularity/mixedness judgements for selected taste stimuli. Physiology and Behavior 31:749–55.CrossRefGoogle ScholarPubMed
O'Mahony, M. & Ishii, R. (1987) The umami taste concept: Implications for the dogma of four basic tastes. In: Umami: A basic taste, ed. Kawamura, Y. & Kare, M. R., pp. 7593. Marcel Dekker.Google Scholar
Osgood, C. E. (1956) Method and theory in experimental psychology Oxford University Press.Google Scholar
Pfaffmann, C. (1941) Gustatory afferent impulses. Journal of Cellular and Comparative Physiology 17:243–58.CrossRefGoogle Scholar
Pfaffmann, C. (1951) Taste and smell. In: Handbook of experimental psychology, ed. Stevens, S. S., pp. 1143–71. Wiley.Google Scholar
Pfaffmann, C. (1954) The chemical senses. In: Experimental psychology, ed. Woodworth, R. S. & Schlosberg, H., pp. 297322. H. Holt.Google Scholar
Pfaffmann, C. (1955) Gustatory nerve impulses in rat, cat and rabbit. Journal of Neurophysiology 18:429–40.CrossRefGoogle Scholar
Pittman, D. W., Labban, C. E, Anderson, A. A. & O'Connor, H. E. (2006) Linoleic and oleic acids alter the licking responses to sweet, salt, sour, and bitter tastants in rats. Chemical Senses 31:835–43.CrossRefGoogle ScholarPubMed
Poincaré, H. (1952) Hypotheses in physics. In: Science and hypotheses Dover.Google Scholar
Popper, K. R. (1963) Conjectures and refutations, pp. 33–39. Routledge & Kegan. From T. Schiek, ed. (2000) Readings in the philosophy of science, pp. 9–13. Mayfield Publishing.Google Scholar
Purves, D., Augustine, G. J., Firzpatrick, D., Katz, L. C., La Mantia, A.-S., McNamara, J. O. & Williams, S. M., eds. (2001) The chemical senses. In: Neuroscience, pp. 317–44. Sinauer.Google Scholar
Rolls, E. T. (2005). Taste and related systems in primates including humans. Chemical Senses 30, Suppl. 1, i76i77.CrossRefGoogle ScholarPubMed
Sarle, W. (1987) Introduction to clustering procedures. In: SAS/STAT guide for personal computers, version 6, ed. Luginbuhl, R. D., Schlotzhauer, S. D. & Parker, J. C.. SAS Institute.Google Scholar
Schiffman, S. S. & Dakis, C. (1975) Taste of nutrients: Amino acids, vitamins, and fatty acids. Perception and Psychophysics 17:140–46.CrossRefGoogle Scholar
Schiffman, S. S. & Erickson, R. P. (1971) A psychophysical model for gustatory quality. Physiology and Behavior 7:617–33.CrossRefGoogle ScholarPubMed
Schiffman, S. S. & Erickson, R. P. (1980) The issue of primary tastes versus a taste continuum. Neuroscience and Biobehavioral Reviews 4:109–17.CrossRefGoogle ScholarPubMed
Schiffman, S. S. & Erickson, R. P. (1993) Psychophysics: Insights into transduction mechanisms and neural coding. In: Mechanisms of taste transduction, ed. Simon, S. A. & Roper, S. D., pp. 395424. CRC Press.Google Scholar
Schiffman, S. S., Orlandi, M. & Erickson, R. P. (1979) Changes in taste and smell with age: Biological aspects. In: Sensory systems and communication in the elderly, ed. Ordy, J. M. & Brizzee, K., pp. 247–68. Raven Press.Google Scholar
Scott, K. (2004) The sweet and the bitter of mammalian taste. Current Opinion in Neurobiology 14:423427.CrossRefGoogle ScholarPubMed
Scott, T. R. & Erickson, R. P. (1971) Synaptic processing of taste-quality information in thalamus of the rat. Journal of Neurophysiology 33:490507.Google Scholar
Scott, T. R. & Giza, B. K. (2000) Issues of gustatory neural coding: Where they stand today. Physiology & Behavior 69(1–2):6576.CrossRefGoogle ScholarPubMed
Shallenberger, R. S. & Acree, T. E. (1967) Molecular theory of sweet taste. Nature 216:480–82.CrossRefGoogle ScholarPubMed
Shallenberger, R. S. & Acree, T. E. (1971) Chemical structure of compounds and their sweet and bitter taste. In: Handbook of neurophysiology, vol. IV: Chemical senses, Part 2, Taste, ed. Beidler, L. M., pp. 221–78. Springer.Google Scholar
Shepherd, G. M. (1994) Chemical senses. In: Neurobiology, 3rd edition. pp. 247–66. Oxford University Press.Google Scholar
Simon, S. S., de Araujo, I. E., Gutierrez, R. & Nicolelis, M. A. L. (2006) The neural mechanisms of gustation: A distributed code. Nature Reviews: Neuroscience 7:819.CrossRefGoogle Scholar
Smith, D. V. & Davis, B. J. (2000) Neural representation of taste. The neurobiology of taste and smell, 2nd edition, ed. Finger, T. E., Silver, W. L. & Restrepo, D., pp. 353–94. Wiley/Liss.Google Scholar
Smith, D. V. & Li, C.-S. (1998) Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract. Chemical Senses 23:159–69.CrossRefGoogle ScholarPubMed
Smith, D. V. & Li, C.-S. (2000) GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract. Brain Research 858:408–15.CrossRefGoogle ScholarPubMed
Smith, D. V. & Margolskee, R. F. (2001) Making sense of taste. Scientific American 284:3239.CrossRefGoogle ScholarPubMed
Smith, D. V. & Scott, T. R. (2001) Gustatory neural coding. In: Handbook of olfaction and gustation, 2nd edition.Marcel Dekker.Google Scholar
Smith, D. V. & St. John, S. J.. (1999) Neural coding of gustatory information. Current Opinion in Neurobiology 9:427–35.CrossRefGoogle ScholarPubMed
Smith, D. V., St. John, S. J. & Boughter, J. D. Jr. (2000) Neuronal cell types and taste quality coding. Physiology & Behavior 69:7785.CrossRefGoogle ScholarPubMed
Smith, D. V. & Vogt, M. B. (1997) The neural code and integrative processes of taste. In: Tasting and smelling, pp. 2576. Academic Press.CrossRefGoogle Scholar
Sokal, R. & Sneath, P. (1963) Principles of numerical taxonomy Freeman.Google Scholar
Stapelton, J. R., Lavine, M. L., Wolpert, R. L., Nicolelis, M. A. L. & Simon, S. A. (2006) Rapid taste responses in the gustatory cortex during licking. Journal of Neuroscience 26:4126–38.CrossRefGoogle Scholar
Steward, O. (2000) Functional neuroscience, pp. 425–36. Springer.CrossRefGoogle Scholar
St. John, S. J. & Smith, D. V. (1999) Salt taste discrimination by rats depends upon differential responses across gustatory neuron types. Chemical Senses 24:547–48.Google Scholar
Sugita, M. & Shiba, Y. (2005) Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet. Science 309:781–85. Available at: http://www.sciencemag.org/cgi/content/full/309/5735/781.CrossRefGoogle Scholar
Tateda, H. (1965) Sugar receptor and α-amino acid in the rat. In: Olfaction and taste, vol. II, ed. Hayashi, T., pp. 383–97. Pergamon.Google Scholar
Unschuld, P. U. (1993) Huang di nei jing su wen: Nature, knowledge, imagery in an ancient Chinese medical text University of California Press.Google Scholar
von Helmholtz, H. (1924) Physiological optics, trans. Southall, J. P. C.. Optical Society of America.Google Scholar
Woolston, D. C. & Erickson, R. P. (1979) Concept of neuron types in gustation in the rat. Journal of Neurophysiology 42:13901409.CrossRefGoogle ScholarPubMed
Young, T. (1802) On the theory of light and colours. Philosophical Transactions, Royal Society of London 92:1248.Google Scholar
Young, T. (1807/1961) On physical optics. A course of lectures on natural philosophy and the mechanical arts, I. In: Color vision, ed. Teevan, R. C. & Birney, R. C.. Van Nostrand.Google Scholar
Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., Zuker, C. S. & Ryba, J. P. (2003) Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112:293301.CrossRefGoogle ScholarPubMed
Zhao, G. Q., Zhang, Y. F., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J. P. & Zuker, C. S. (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–66.CrossRefGoogle ScholarPubMed