Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T15:44:43.941Z Has data issue: false hasContentIssue false

Thoughts on vigor in the motor and cognitive domains

Published online by Cambridge University Press:  30 September 2021

Takashi Hanakawa*
Affiliation:
Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto606-8501, Japan. hanakawa.takashi.2s@kyoto-u.ac.jp; https://www.brainteg.med.kyoto-u.ac.jp/

Abstract

We feel exhausted after working mentally hard even while just sitting on a chair, suggesting the concept of cognitive vigor. Do movement vigor and cognitive vigor share control mechanisms? Functions of the basal ganglia-cortical circuits, which are regulated by the midbrain dopaminergic system, appear to underlie both movement vigor and cognitive vigor.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albin, R. L., & Leventhal, D. K. (2017). The missing, the short, and the long: Levodopa responses and dopamine actions. Annals of Neurology, 82(1), 419.CrossRefGoogle Scholar
Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson's disease. Brain, 124(Pt 11), 21312146.CrossRefGoogle ScholarPubMed
Cantiniaux, S., Vaugoyeau, M., Robert, D., Horrelou-Pitek, C., Mancini, J., Witjas, T., & Azulay, J. P. (2010). Comparative analysis of gait and speech in Parkinson's disease: Hypokinetic or dysrhythmic disorders? Journal of Neurology Neurosurgery & Psychiatry, 81(2), 177184.CrossRefGoogle ScholarPubMed
Hanakawa, T., & Goldfine, A. M., & Hallett, M. (2017). A common function of basal ganglia-cortical circuits subserving speed in both motor and cognitive domains. eNeuro, 4(6), e0200e0217.CrossRefGoogle ScholarPubMed
Panigrahi, B., Martin, K. A., Li, Y., Graves, A. R., Vollmer, A., Olson, L., … Dudman, J. T. (2015). Dopamine is required for the neural representation and control of movement vigor. Cell, 162(6), 14181430.CrossRefGoogle ScholarPubMed
Parkinson, J. (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones.Google Scholar
Sawamoto, N., Honda, M., Hanakawa, T., Fukuyama, H., & Shibasaki, H. (2002). Cognitive slowing in Parkinson's disease. Journal of Neuroscience, 22(12), 51985203.CrossRefGoogle ScholarPubMed
Shaikh, A. G., & Ghasia, F. F. (2019). Saccades in Parkinson's disease: Hypometric, slow, and maladaptive. Progress in Brain Research, 249, 8194.CrossRefGoogle ScholarPubMed
Syed, E. C., Grima, L. L., Magill, P. J., Bogacz, R., Brown, P., & Walton, M. E. (2016). Action initiation shapes mesolimbic dopamine encoding of future rewards. Nature Neuroscience, 19(1), 34–6.CrossRefGoogle ScholarPubMed