Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:30:22.098Z Has data issue: false hasContentIssue false

Chromosome evolution in the Salmonidae (Pisces): an update

Published online by Cambridge University Press:  27 March 2001

RUTH PHILLIPS
Affiliation:
Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA (e-mail: rp@csd.uwm.edu)
PETR RÁB
Affiliation:
Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, 277 21 Libechov, Czech Republic
Get access

Abstract

The karyotypes of salmonid fishes including taxa in the three subfamilies Coregoninae, Thymallinae and Salmoninae are described. This review is an update of the (Hartley, 1987) review of the chromosomes of salmonid fishes. As described in the previous review, the karyotypes of salmonid fishes fall into two main categories based on chromosome numbers: the type A karyotypes have diploid numbers close to 80 with approximately 100 chromosome arms (2n = 80, NF = 100), and the type B karyotypes have diploid numbers close to 60 with approximately 100 chromosome arms (2n = 60, NF = 100). In this paper we have proposed additional sub categories based on variation in the number of chromosome arms: the A′ type with NF = 110–120, the A″ type with NF greater than 140, and the B′ type with NF less than 80. Two modes of chromosome evolution are found in the salmonids: in the Coregoninae and the Salmoninae the chromosomes have evolved by centric fusions of the Robertsonian type decreasing chromosome numbers (2n) while retaining chromosome arm numbers (NF) close to that found in the hypothetical tetraploid ancestor so that most extant taxa have either type A or type B karyotypes. In the Thymallinae, the chromosomes have evolved by inversions so that chromosome arm numbers (NF) have increased but chromosome numbers (2n) close to the karyotype of the hypothetical tetraploid ancestor have been retained and all taxa have type A″ karyotypes. Most of the taxa with type B karyotypes in the Coregoninae and Salmoninae are members of the genus Oncorhynchus, although at least one example of type B karyotypes is found in all of the other genera. These taxa either have an anadromous life history or are found in specialized lacustrine environments. Selection for increases or decreases in genetic recombination as proposed by Qumsiyeh, 1994 could have been involved in the evolution of chromosome number in salmonid fishes.

Type
Review Article
Copyright
© Cambridge Philosophical Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)