Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T00:14:12.741Z Has data issue: false hasContentIssue false

Modelling Extreme Market Events. A Report of the Benchmarking Stochastic Models Working Party

Published online by Cambridge University Press:  10 June 2011

R. Frankland
Affiliation:
Norwich Union, 2 Rougier Street, York YO90 1UU. Tel: +44(0) 1904 45246; E-mail: ralph.frankland@norwich-union.co.uk

Abstract

This paper focusses on some practical issues that can arise when developing methodologies for calculating benchmark figures for extreme market events, particularly in the context of the Financial Services Authority's ICAS regime. The paper limits discussion to equity and interest rate risks. Whilst not intended to constitute formal guidance, it is hoped that the material contained within the paper will be useful to practitioners. The paper acknowledges the role of prior beliefs in the choice of data to be used for modelling and its influence upon the ensuing results.

Type
Sessional meetings: papers and abstracts of discussions
Copyright
Copyright © Institute and Faculty of Actuaries 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I.A., eds. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables, New York: Dover Publications, ISBN 978-0-486-61272-0.Google Scholar
Anderson, T.W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52(278), 200203.CrossRefGoogle Scholar
Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society of London, Series A, 353(1674), 401419.Google Scholar
Barndorff-Nielsen, O. & Halgreen, C. (1977). Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions. Probability Theory and Related Fields, 38(4), 309311.Google Scholar
Bouchaud, J.-P. & Potters, M. (2003). Theory of financial risk and derivative pricing: from statistical physics to risk management. Cambridge University Press, ISBN 0521819164.CrossRefGoogle Scholar
Cochrane, J.H. (1999). New facts in finance. CRSP Working Paper No. 490.CrossRefGoogle Scholar
Cornish, E.A. & Fisher, R.A. (1937). Moments and cumulants in the specification of distributions. Revue de I'Institute International de Statistique, 5, 307320.CrossRefGoogle Scholar
Christoffersen, P., Diebold, F. & Schuermann, T. (1998). Horizon problems and extreme events in financial risk management, Federal Reserve Bank of New York Economic Policy Review.CrossRefGoogle Scholar
Christoffersen, F. & Diebold., F. (2000). How relevant is volatility forecasting for financial risk management? The Review of Economics and Statistics, 82(1), 1222.CrossRefGoogle Scholar
Dowd, K. (2002). A bootstrap backtest. Risk, 25(10), 9394.Google Scholar
Eberlein, E. & von Hammerstein, E.A. (2002). Generalized hyperbolic and inverse Gaussian distributions: limiting cases and approximation of processes, Working Paper No. 80, University of Freiburg.Google Scholar
Eberlein, E. & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1(3), 281299.CrossRefGoogle Scholar
Embrechts, P., Mikosch, T. & Kuppelberg, C. (2008). Modelling extremal events for insurance and finance. Series: Stochastic Modelling and Applied Probability, Vol. 33, Springer Verlag, ISBN: 978–3–540–60931–5.Google Scholar
Exley, J., Meyta, S. & Smith, A.D. (2004). Mean Reversion, presented to Finance and Investment Conference 2004.Google Scholar
Finkelstein, G.S. (1997). Maturity guarantees revisited: allowing for extreme stochastic fluctuations using stable distributions. British Actuarial Journal, 3(2), 411482.CrossRefGoogle Scholar
Hairs, C.J., Belsham, D.J., Bryson, N.M., George, C.M., Hare, D.J.P., Smith, D.A. & Thompson, S. (2002). Fair valuation of liabilities. British Actuarial Journal, 8, 203299.CrossRefGoogle Scholar
Heinrich, J. (2004). A guide to the Pearson type IV distribution. Note 6820, Collider Detector at Fermilab, Fermilab, Batavia, Illinois.Google Scholar
Kemp, M.H.D. (2008). Catering for the fat-tailed behaviour of investment returns, Threadneedle working paper.Google Scholar
Kendall, M.G. & Stuart, A. (1979). The advanced theory of statistics. Charles Griffin & Company, London, 4th edition.Google Scholar
Levy, P. (1953). Random functions: general theory with special reference to Laplacian random functions. Univ. California Publ. Statist., 1, 331390.Google Scholar
Litterman, R. & Scheinkman, J. (1991). Common factors affecting bond returns. The Journal of Fixed Income, 1(1), 5461.CrossRefGoogle Scholar
Mandelbrot, B. (1963). The variation of certain speculative prices. The Journal of Business, 36, 219249.CrossRefGoogle Scholar
Rebonato, R. (2007). Plight of the fortune tellers: why we need to manage financial risk differently. Princeton University Press, ISBN 0691133611.Google Scholar
Ross, S.M. (1997). Simulation. Academic Press, 2nd edition, pp121127.Google ScholarPubMed
Santa-Clara, P. & Sornette, D. (2001). The dynamics of the forward interest rate curve with stochastic string shocks. The Review of Financial Studies, 14, 149185.CrossRefGoogle Scholar
Scherer, B. (2007). Portfolio construction and risk budgeting (3rd edition). Risk Books.Google Scholar
Shiryaev, A.N. (1999). Essentials of stochastic finance: models, theory. World Scientific, River Edge, NJ.CrossRefGoogle Scholar
Walter, C. (1989). Mise en evidence de distributions Levy-stables et d'une structure fr actable sur le marche de Paris. Proceedings of the First AFIR Colloquium, http://www.actuaries.org.uk/AFIR/Colloquia/Paris/Walter.pdfGoogle Scholar
Wilkie, A.D. (1986). A stochastic investment model for actuarial use. Transactions of the Faculty of Actuaries, 39, 341381.CrossRefGoogle Scholar
Wilkie, A.D. (1995). More on a stochastic investment model for actuarial use. British Actuarial Journal, 1(5), 777964.CrossRefGoogle Scholar
Anderson, T.W. (1957). Multivariate analysis. Wiley. 3rd edition 2003.Google Scholar
Gibson, M.S. & Pritsker, M. (2000). Improving grid-based methods for estimating value at risk of fixed-income portfolios. http://www.federalreserve.gov/Pubs/feds/2000/200025/200025pap.pdfCrossRefGoogle Scholar
Jamshidian, F. & Zhu, Y. (1997). Scenario simulation model: theory and methodology. Finance and Stochastics, 1(1).Google Scholar
Loretan., M. (1997). Generating market risk scenarios using principal components analysis: methodological and practical considerations. http://www.bis.org/publ/ecsc07c.pdfGoogle Scholar
Matzner-Løber, E. & Villa, C. (2004). Functional principal component analysis of the yield curve. http://www.u-cergy.fr/AFFI_2004/IMG/pdf/MATZNER.pdfGoogle Scholar
Thomas, M. & Maré, M. (2007). Long term f or ecasting and hedging of the South African yield curve. http://www.actuarialsociety.org.za/scripts/file_build.asp?id=100000794Google Scholar
Tolmasky, C.F. (2007). Principal components analysis in yield-curve modelling (slides). http://www.math.umn.edu/finmath/seminar/Materials/tolmaskyl.pdfGoogle Scholar