Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T03:59:23.724Z Has data issue: false hasContentIssue false

Cholecalciferol supplementation alters gut function and improves digestibility in an underground inhabitant, the naked mole rat (Heterocephulus gluber), when fed on a carrot diet

Published online by Cambridge University Press:  09 March 2007

Shlomo Yahav
Affiliation:
MRC Mineral Metabolism Research Unit, Department of Paediatrics, University of the Witwatersrand, Baragwanath Hospital, Johannesburg, PO Bertsham 2013, South Africa
Rochelle Buffenstein
Affiliation:
Physiology Department, University of the Witwatersrand, Medical School, 7 York Road, Parktown, Johannesburg 2193, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Naked mole rats (Heterocephalus glaber) lead a strictly subterranean existence and appear to be naturally deficient in cholecalciferol (D3). Oral supplementation with D3 (Ds) led to a 1.8-fold increase in food intake and the associated enlargement (1.4-fold) of the caecum. The effect of Ds, and the concomitant increase in food intake, on caecal fermentation efficiency when animals were fed on a carrotbased diet was determined by measuring the rate of both gas production and short-chain fatty acid (SCFA) production. Microbial-controlled fermentation processes in the caecum were enhanced with Ds when compared with animals not receiving a D3 supplement (Dn). Both the rates of gas production (Dn 10.76 (SE 0.77), Ds 15.20 (SE 1.77) ml/g dry matter (DM) per h) and SCFA production (Dn 463.0 (SE 33.7), Ds 684.3 (SE 74.8) μmol/g DM per h) increased more than 1.4-fold per g DM caecal substrate. These factors contributed to the higher digestibility of the food in Ds animals. The larger quantity of energy available to D3-replete naked mole rats was not used in anabolic processes, for these animals maintained mass. These findings suggest that metabolic rate in D3-replete animals was elevated. Thus, despite improved gut function, D3-replete animals may be disadvantaged by their higher energy and food requirements in their natural milieu.

Type
Vitamin Metabolism
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

American Institute of Nutrition (1977). Report of the A.I.N. ad hoe committee on standards for nutritional studies. Journal of Nutrition 107, 1340.CrossRefGoogle Scholar
Buffenstein, R., Jarvis, J. U. M., Opperman, L. A., Cavaleros, M., Hough, S. & Ross, P. (1988). Vitamin D metabolism and expression in chthonic naked mole rats. Journal of Bone and Mineral Research 3, S119 Abstr.Google Scholar
Buffenstein, R., Skinner, D. C., Yahav, S., Moodley, G. P., Cavaleros, M., Zachen, D., Ross, F. P. & Pettifor, J. M. (1991). Effect of oral cholecalciferol supplementation at physiological and supraphysiological doses in naturally D3-deficient subterranean damdra mole rats, Cryptomys damarensis. Journal of Endocrinology 131, 197202.Google Scholar
Buffenstein, R. & Yahav, S. (1991 a). The effect of diet on microbial population and function in the caecum of the subterranean naked mole rat (Heterocephalus glaber). British Journal of Nutrition 65, 249258.Google Scholar
Buffenstein, R. & Yahav, S. (1991 b). Cholecalciferol has no effect on calcium and inorganic phosphorus balance in a naturally cholecalciferol-deplete subterranean mammal, the naked mole rat (Heterocephalus glaber). Journal of Endocrinology 129, 2126.Google Scholar
Buffenstein, R. & Yahav, S. (1991 c). Is the naked mole-rat Heterocephalus glaber an endothermic yet poikilothermic mammal? Journal of Thermal Biology 16, 227232.CrossRefGoogle Scholar
Carol, E. J. & Hungate, R. E. (1954). The magnitude of microbial fermentation in bovine rumen. Applied Microbiology 2, 205214.Google Scholar
Chertow, B. S., Sivitz, W. I., Baranetsky, N. G., Clark, S. A., Waite, A. & Deluca, H. F. (1983). Cellular mechanisms of insulin release: The effects of vitamin D deficiency and repletion on rat insulin secretion. Endocrinology 113, 15111518.Google Scholar
Clark, S. A., D'ercole, A. J. & Toverud, S. U. (1986). Somatomedin-C/;sol;Insulin like growth factor I and vitamin D-induced growth. Endocrinology 119, 16601665.Google Scholar
Clarke, S. A., Stumpf, W. E. & Sar, M. (1981). Effect of 1,25-dihydroxyvitamin D3 on insulin secretion. Diabetes 30, 382386.Google Scholar
Davies, J. (1988). Laboratory Methods. Irene, Transvaal: Animal Nutrition Subdirectorate Animal and Dairy Science Research Institute.Google Scholar
EI-Din, M. Z. & EI-Shazly, K. (1969). Evaluation of a method of measuring fermentation rates and net growth of rumen micro-organisms. Applied Microbiology 17, 801804.Google Scholar
Gardener, R. M., Reinhardt, T. A. & Horst, R. L. (1988). The biological assessment of vitamin D3 metabolites produced by rumen bacteria. Journal of Steroid Biochemistry 29, 185189.Google Scholar
Jarvis, J. U. M. (1991). Methods for capturing, transporting and maintaining naked mole rats in captivity. In Biology of the Naked Mole Rat, pp. 467483 [Sherman, P. W., Jarvis, P. W. and Alexander, R. D., editors]. Princeton: Princeton University Press.Google Scholar
Jarvis, J. U. M. & Bennett, N. C. (1991). Ecology and behaviour of the family Bathyergidae. In Biology of the Naked Mole Rat, pp. 6669 [Sherman, P. W., Jarvis, J. U. M. and Alexander, R. D., editors]. Princeton: Princeton University Press.Google Scholar
Kadowaki, S. & Norman, A. W. (1984). Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. Journal of Clinical Investigation 73, 759–166.Google Scholar
McBee, R. H. (1970). Metabolic contributions of the caecal flora. American Journal of Clinical Nutririon 23, 15141518.Google Scholar
Norman, A. W., Frankel, B. J., Heldt, A. M. & Grodsky, M. (1980). Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209, 823825.Google Scholar
Nyomba, B. L., Bouillon, R. & De Moor, P. (1984). Influence of vitamin D status on insulin secretion and glucose tolerance in the rabbit. Endocrinology 115, 191197.CrossRefGoogle ScholarPubMed
Rechkemmer, G., Ronnau, K. & Engelhardt, W. W. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comparative Biochemistry and Physiology 90A, 563568.Google Scholar
Sibly, R. M. (1981). Strategies in digestion and defecation. In Physiological Ecology, and Evolutionary Approach to Resource Use, pp. 109139 [Townsend, C. R. and Calow, P., editors]. Sunderland, Massachusetts: Sinauer Association.Google Scholar
Skinner, D. C., Moodley, G. & Buffenstein, R. (1991). Is Vitamin D3 essential for mineral metabolism in the Damara mole rat (Cryptomys damarensis)? General and Cotnparative Endocrinology 81, 501505.Google Scholar
Sommerfeldt, J. L., Horst, R. L., Napoli, J. L., Beitz, D. C. & Littledike, E. T. (1980). Evidence for in-vitro production of vitamin D2 and vitamin D3 metabolites by rumen microbes. Journal of Dairy Science 63, Suppl. 1 , 8889.Google Scholar
Stumpf, W. E., Sar, M. & Clark, S. A. (1982). Brain target sites for 1,25-dihydroxyvitamin D3. Science 215, 14041405.Google Scholar
Van Soest, P. J. (editor) (1982). Gastrointestinal fermentation. In Nutritional Ecology of the Rummants, pp. 152229. Corvallis, Oregon: O. and B. Books.Google Scholar
Vleck, D. (1981). Burrow structure and foraging costs in the fossorial rodent, Thomomys bottae. Oecologia 49, 391396.Google Scholar
Yahav, S. & Buffenstein, R. (1991). The effect of temperature on caecal fermentation processes in a poikilothermic mammal, Heterocephalus glaber. Journal of Thermal Biology 16, 345349.Google Scholar
Zar, J. H. (1974). Biostatistiral Analysis. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar