Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T08:16:24.958Z Has data issue: false hasContentIssue false

Dietary animal proteins and cholesterol metabolism in rabbits

Published online by Cambridge University Press:  09 March 2007

Maria R. Lovati
Affiliation:
Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
Clive E. West
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands
Cesare R. Sirtori
Affiliation:
Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
Anton C. Beynen
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands Department of Laboratory Animal Science, State University, PO Box 80.166, 3508 TD Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect in rabbits of giving isonitrogenous purified diets containing casein, ovalbumin, fish protein, milk-whey protein and soya-bean protein were compared. The diets were balanced for cholesterol and for the amount and type of fat. When incorporated into low-cholesterol diets (0.8 g cholesterol/kg), casein, ovalbumin and soya-bean protein produced similar levels of serum cholesterol. With a high background of dietary cholesterol (1.5 g/kg), serum cholesterol concentrations increased with soya-bean protein, whey protein, casein and fish protein, in that order. Thus, the hypercholesterolaemic effect of casein in carefully balanced diets was only seen against a high-cholesterol background. The development of hypercholesterolaemia produced by giving fish protein was different from that produced by casein. First, less cholesterol accumulated in the very-low-density-lipoprotein fractions and more in the lipoproteins of higher density with fish protein than with casein. Second, fish protein, unlike casein, did not increase liver cholesterol. Third, transfer of rabbits from a diet containing soya-bean protein to one containing casein resulted in an immediate marked depression in neutral steroid and bile acid excretion in faeces. However, when rabbits were fed on the diet with fish protein after the diet with soya-bean protein, there was no significant depression in neutral steroid output and the depression in bile acid output was delayed. The present study suggests that different animal proteins cause hypercholesterolaemia by different mechanisms.

Type
Diet and Lipid Metabolism
Copyright
Copyright © The Nutrition Society 1990

References

AbellL, L. L, L., Levy, B. B., Brodie, B. B. & Kendall, F. E. (1952). A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. Journal of Biological Chemistry 195, 357366.CrossRefGoogle Scholar
Barter, P. J. & Lally, J. I. (1978). Metabolism of esterified cholesterol in the plasma very low density lipoproteins in rabbits: studies in vivo and in vitro. Atherosclerosis 31, 355364.CrossRefGoogle Scholar
Beynen, A. C., Den Engelsman, G., Scholz, K. E. & West, C. E. (1983 a). Casein-induced hypercholesterolaemia in rabbits: distribution of cholesterol, triglycerides and phospholipids between serum and liver. Annals of Nutrition and Metabolism 27, 117124.CrossRefGoogle ScholarPubMed
Beynen, A. C., Van der Meer, R., West, C. E., Sugano, M. & Kritchevsky, D. (1986). Possible mechanisms underlying the differential cholesterolemic effects of dietary casein and soy protein. In Nutritional Effects on Cholesterol Metabolism, pp. 2945 [Beynen, A. C., editor]. Voorthuizen, The Netherlands: Transmondial.Google Scholar
Beynen, A. C., Van Gils, L. G. M., Scholz, K. E. & West, C. E. (1983 b). Serum cholesterol levels of calves and rabbits fed milk replacers containing skim milk powder or soya-bean protein concentrate. Nutrition Reports International 27, 757764.Google Scholar
Beynen, A. C. & West, C. E. (1981). The distribution of cholesterol between lipoprotein fractions of serum from rabbits fed semipurified diets containing casein and either coconut oil or corn oil. Zeitschrift für Tierphysiologie, Tierernährung and Futtermittelkunde 46, 233239.CrossRefGoogle ScholarPubMed
Beynen, A. C., Winnubst, E. N. W. & West, C. E. (1983 c). The effect of replacement of dietary soya-bean protein by casein on the fecal excretion of neutral steroids in rabbits. Zeitschrift für Tierphysiologie, Tierernährung and Futtermittelkunde 49, 4349.CrossRefGoogle ScholarPubMed
Brussaard, J. H., Katan, M. B. & Hautvast, J. G. A. J. (1983). Feacal excretion of bile acids and neutral steroids on diets differing in type and amount of dietary fat in young healthy persons. European Journal of Clinical Investigation 13, 115122.CrossRefGoogle Scholar
Carroll, K. K. (1971). Plasma cholesterol levels and liver cholesterol biosynthesis in rabbits fed commercial or semisynthetic diets with and without added fats or oils. Atherosclerosis 13, 6776.CrossRefGoogle ScholarPubMed
Carroll, K. K. (1978). The role of dietary protein in hypercholesterolemia and atherosclerosis. Lipids 13, 360365.CrossRefGoogle ScholarPubMed
Carroll, K. K. & Hamilton, R. M. G. (1975). Effects of dietary protein and carbohydrate on plasma cholesterol levels in relation to atherosclerosis. Journal of Food Science 40, 1823.CrossRefGoogle Scholar
Chao, Y. S., Yamin, T. T. & Alberts, A. W. (1982). Effects of cholestyramine on low density lipoprotein binding sites on liver membranes from rabbits with endogenous hypercholesterolemia induced by a wheat starch–casein diet. Journal of Biological Chemistry 257, 36233627.CrossRefGoogle ScholarPubMed
Cohn, J. S., Kimpton, W. G. & Nestel, P. J. (1984). The effect of dietary casein and soy protein on cholesterol and very low density lipoprotein metabolism in the rat. Atherosclerosis 52, 219231.CrossRefGoogle ScholarPubMed
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal sources. Journal of Biological Chemistry 226, 497509.CrossRefGoogle Scholar
Gibney, M. J. & Kritchevsky, D. (editors) (1983). Animal and vegetable proteins in lipid metabolism and atherosclerosis. Current Topics in Nutrition and Disease, vol. 8, p. 177. New York: Alan R. Liss Inc.Google Scholar
Hamilton, R. M. G. & Carroll, K. K. (1976). Plasma cholesterol levels in rabbits fed low fat, low cholesterol diets: effects of dietary proteins, carbohydrate and fibres from different sources. Atherosclerosis 24, 4762.CrossRefGoogle ScholarPubMed
Huff, M. W. & Carroll, K. K. (1980). Effects of dietary protein on turnover, oxidation, and absorption of cholesterol, and on steroid excretion in rabbits. Journal of Lipid Research 21, 546558.CrossRefGoogle ScholarPubMed
Iritani, N., Narita, R., Fujita, T. & Tanaka, T. (1985). Effects of dietary fish protein, soybean protein and casein on cholesterol turnover in rats. Journal of Nutritional Science and Vitaminology 31, 385392.CrossRefGoogle ScholarPubMed
Kuyvenhoven, M. W., West, C. E., Van der Meer, R. & Beynen, A. C. (1986). Fecal steroid excretion in relation to the development of casein-induced hypercholesterolemia in rabbits. Journal of Nutrition 116, 13951404.CrossRefGoogle Scholar
Miller, R. G. (1966). Simultaneous Statistical Inference, pp. 8186. New York: McGraw Hill Book Company.Google Scholar
Nikkilä, E. A. (1978). Metabolic regulation of plasma high density lipoprotein concentration. European Journal of Clinical Investigation 8, 111113.CrossRefGoogle Scholar
Redgrave, T. G., Roberts, D. C. K. & West, C. E. (1975). Separation of plasma lipoproteins by density-gradient ultracentrifugation. Analytical Biochemistry 65, 4249.CrossRefGoogle ScholarPubMed
Robinson, D. S. & Wing, D. R. (1971). Studies on clearing factor lipase related to its role in the removal of lipoprotein triglyceride from the plasma. In Plasma Lipoproteins. Biochemical Society Symposium no. 33, pp. 123135 [Smellie, R. M. S., editor]. London: Academic Press.Google Scholar
Röschlau, P., Bernt, E. & Gruber, W. (1974). Enzymatische Bestimmung des Gesamtcholesterins in Serum. (Enzymatic estimation of cholesterol concentration in serum). Zeitschrft für Klinische Chemie and Klinische Biochemie 12, 403407.Google Scholar
Scholz, K. E., Beynen, A. C. & West, C. E. (1982). Comparison between the hypercholesterolaemia in rabbits induced by semipurified diets containing either cholesterol or casein. Atherosclerosis 44, 8597.CrossRefGoogle ScholarPubMed
Sirtori, C. R., Agradi, E., Mantero, O., Conti, F. & Gatti, E. (1977). Soybean protein diet in the treatment of type II hyperlipoproteinaemia. Lancet i, 275277.CrossRefGoogle Scholar
Sirtori, C. R., Galli, G., Lovati, M. R., Carrare, P., Bosisio, E. & Galli Kienle, M. (1984). Effects of dietary proteins on the regulation of liver lipoprotein receptors in rats. Journal of Nutrition 114, 14931500.CrossRefGoogle ScholarPubMed
Sugano, M., Ishiwaki, N., Nagata, Y. & Imaizumi, K. (1982 a). Effects of arginine and lysine addition to casein and soya-bean protein on serum lipids, apolipoproteins, insulin and glucagon in rats. British Journal of Nutrition 48, 211221.CrossRefGoogle ScholarPubMed
Sugano, M., Tanaka, K. & Ide, T. (1982 b). Secretion of cholesterol, triglyceride and apolipoprotein A-I by isolated perfused liver from rats fed soya-bean protein and casein or their amino acid mixtures. Journal of Nutrition 112, 855862.CrossRefGoogle ScholarPubMed
Terpstra, A. H. M. & Sanchez-Muniz, F. J. (1981). Time course of the development of hypercholesterolaemia in rabbits fed semipurified diets containing casein or soya-bean protein. Atherosclerosis 39, 217227.CrossRefGoogle ScholarPubMed
Terpstra, A. H. M., Woodward, C. J. H. & Sanchez-Muniz, F. J. (1981). Improved techniques for the separation of serum lipoproteins by density gradient ultracentrifugation: visualization by prestaining and rapid separation of serum lipoproteins from small volumes of serum. Analytical Biochemistry 111, 149157.CrossRefGoogle ScholarPubMed
Van der Meer, R., Schoningh, R. & De Vries, H. (1985). The phosphorylation state of casein and its differential hypercholesterolemic effect in rabbits and rats. In Cholesterol Metabolism in Health and Disease: Studies in The Netherlands, pp. 151157 [Beynen, A. C., Geelen, M. J. H., Katan, M. B. and Shouten, J. A., editors]. Wag-eningen, The Netherlands: Ponsen & Looijen.Google Scholar
West, C. E., Spaaij, C. J. K., Clous, W. M., Twisk, H. P., Goertz, M. P. H., Hubbard, R. W., Kuyvenhoven, M. W., Van der Meer, R., Roszkowski, W. F., Sanchez, A. & Beynen, A. C. (1989). Comparison of the hypocholesterolemic effects of dietary soybean protein with those of formaldehyde-treated casein in rabbits. Journal of Nutrition 119, 843856.CrossRefGoogle ScholarPubMed
Wilson, R. B., Newberne, P. M. & Connor, M. W. (1973). An improved semisynthetic diet for rabbits: dietary fat-carbohydrate interaction in atherogenesis. Archives of Pathology 96, 355359.Google ScholarPubMed
Wissler, R. W. & Vesselinovitch, D. (1968). Experimental models of human atherosclerosis. Annals of the New York Academy of Sciences 149, 907922.Google ScholarPubMed
Zlatkis, A., Zak, B. & Boyle, A. J. (1953). A new method for the direct determination of serum cholesterol. Journal of Laboratory and Clinical Medicine 41, 486496.Google ScholarPubMed