Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T03:34:11.770Z Has data issue: false hasContentIssue false

Dietary tryptophan level and the enzymes of tryptophan NAD pathway

Published online by Cambridge University Press:  25 February 2008

U. Satyanarayana
Affiliation:
National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania (P.O.), Hyderabad-500 007, India
B. S. Narasinga Rao
Affiliation:
National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania (P.O.), Hyderabad-500 007, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Dietary tryptophan was found to regulate the activities of tryptophan oxygenase (EC I. 13.I. 12)and quinolinate phosphoribosyltransferase (EC z.4. 2a) in liver.

2. With increasing tryptophan concentration in the diet containing 100 g protein/kg, tryptophan oxygenase activity increased while that of quinolinate phosphoribosyltransferase decreased. The response of these enzymes to dietary tryptophan at lower dietary protein level (25 g/kg) was not significant.

3. Liver nicotinate phosphoribosyltransferase (EC 2.4.2. 11)activity and kidney picolinate carboxylase (EC 4. I.I. 45) activity were unaltered with different tryptophan concentrations in the diet.

4. The response of various biochemical measurements was dependent on the tryptophan intake and the changes were marked below and above the requirement level of tryptophan.

5. It is suggested that the urinary excretion of quinolinic acid and N'-methylnicotinamide may be useful in assessing the tryptophan nutritional status and its requirement.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Anasuya, A. & Narasinga Rao, B. S. (1975). Biochem. Med. 12, 365.CrossRefGoogle Scholar
Carpenter, K. J. & Kodicek, E. (1950). Biochem. J. 46, 421.CrossRefGoogle Scholar
Chatagner, F. (1964). Biochem. biophys. Acta 81, 400.Google Scholar
Chiancone, F. M. (1965). In Newer Methods in Nutritional Biochemistry, vol. 2, p. 249. [Albanese, A., editor]. New York and London: Academic Press.Google Scholar
Cho-Chung, Y. S. & Pitot, H. C. (1967). J. biol. Chem. 212, 1192.CrossRefGoogle Scholar
Feigelson, P. & Greengard, O. (1962). J. biol. Chem. 237, 3714.CrossRefGoogle Scholar
Freed, M. (1966). In Method of Vitamin Assay, 3rd ed., p. 169. [Association of Official Vitamin Chemists, editors]. New York: Interscience Publishers.Google Scholar
Ghafoorunissa, & Narasinga Rao, B. S. (1973). Biochem. J. 134, 425.CrossRefGoogle Scholar
Henderson, L. M. (1949). J. biol. Chem. 181, 677.CrossRefGoogle Scholar
Ikeda, M., Tsuji, H., Nakamura, S., Ichiyama, A., Nishizuka, Y. & Hayaishi, O. (1965). J. biol. Chem. 240, 1395.CrossRefGoogle Scholar
Ismande, J. (1964). Biochim. biophys. Arta 85, 255.Google Scholar
Knox, W. E. (1966). In Advances in Enzyme Regulation, v. 4, p. 287 [Weber, G., editor]. Oxford: Pergamon Press.Google Scholar
Knox, W. E. & Mehler, A. H. (1951). Science N. Y. 113, 237.CrossRefGoogle Scholar
Levitas, M.. Robinson, J., Rosen, F., Huff, J. W. & Perlzweig, W. A. (1947). J. biol. Chem. 167, 169.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem 193, 265.CrossRefGoogle Scholar
Majeurs, P. W. & Kilburn, E. (1969). J. biol. Chem. 244, 6254.CrossRefGoogle Scholar
National Research Council (1963). Rep. natn. Acad. Sci., Wash. no. 1100.Google Scholar
Nishizuka, Y. & Nakamura, S. (1970). Meth. Enzym. 17A, 491.CrossRefGoogle Scholar
Oser, B. L. (1965). In Hawk's Physiological Chemistry, 14th ed., p. 1233. New York: McGraw-Hill.Google Scholar
Rama Rao, P. B., Chalam Metta, V. & Connor Johnson, B. (1959). J. Nutr. 69, 387.Google Scholar
Roper, M. D. & Franz, J. M. (1977). J. biol. Chem. 252, 4354.CrossRefGoogle Scholar
Satyanarayana, U. & Narasinga Rao, B. S. (1977). Br. J. Nutr. 38, 39.CrossRefGoogle Scholar
Schimke, R. T. (1973). Adv. Enzymol. 37, 135.Google Scholar
US Pharmacopoeia XVII (1965), p. 862.Google Scholar
Winer, B. J. (1974). Statistical Principles in Experimental Design, 2nd ed., pp. 445449. New York: McGraw-Hill.Google Scholar
Young, V. R., Hussein, M. A., Murray, E. & Scrimshaw, N. S. (1971). J. Nutr. 101, 45.CrossRefGoogle Scholar