Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T13:38:10.076Z Has data issue: false hasContentIssue false

Differences in body compositions, growth and food intakes between mice which have been selected for a small and large body size

Published online by Cambridge University Press:  09 March 2007

Garry J. Rucklidge
Affiliation:
Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Q-strain mice selected for high (QLF) or low (QSC) body-weight at 6 weeks of age were compared with respect to their body-weight increases, gross body compositions and food intakes.

2. DNA, RNA, protein and hydroxyproline contents were measured.

3. QLF animals were larger at all stages of development but ate more food and gained more body-weight per unit food intake with an apparently improved efficiency of utilization compared with QSC mice.

4. The efficiency of deposition of dietary energy in Q-strain mice was found to be significantly lower than that of other growing mammals receiving similar energy intakes.

5. Body water, protein and fat of both strains were similar at birth and at 42 d of age but the contribution of fat to body-weight in the preweaning phase was greater for QLF while QSC accreted more fat per unit weight gain in the postweaning period.

6. An increase in cell number made a greater contribution to the growth post partum of the QLF mice, but by 42 d of age little difference between the number of cells per unit weight in the two strains was evident.

7. Despite increases in RNA concentrations at all stages of development, of QLF mice compared with QSC, measurements of body composition do not indicate any accompanying increases of protein concentration in these animals.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Aberle, E. D. & Doolittle, D. P. (1976). Growth 40, 133.Google Scholar
Atkinson, T., Fowler, V. R. F., Garton, G. A. & Lough, A. K. (1972). Analyst, Lond. 97, 562.CrossRefGoogle Scholar
Benedict, F. G. (1938). Vital Energetics. Washington, DC: Carnegie Institution of Washington.Google Scholar
Blaxter, K. L. (1972). In Festskrift til Knut Breirem p. 19 [Spildo, L. S., Homb, T. and Hvidsten, H., editors]. Oslo: Mariendals Boktrykkeri A. S. Gjøvidk.Google Scholar
Brown, M. A. & Frahm, R. R. (1975). J. Anim. Sci. 41, 1002.Google Scholar
Brown, M. A., Frahm, R. R. & Johnson, R. R. (1977). J. Anim. Sci. 45, 19.Google Scholar
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). Analyst, Lond. 95, 181.Google Scholar
Eisen, E. J., Hayes, J. F., Allen, C. E., Bakker, H. & Nagai, J. (1978). Growth 42, 7.Google ScholarPubMed
Ezekwe, M. O. & Martin, R. J. (1975). Growth 39, 95.Google Scholar
Falconer, D. S. (1973). Genet. Res., Camb. 22, 291.Google Scholar
Falconer, D. S. (1977). Proc. Nutr. Soc. 36, 47.Google Scholar
Falconer, D. S., Gauld, I. K. & Roberts, R. C. (1978). Genet. Res. Camb. 31, 287.Google Scholar
Firschein, H. E. & Shill, J. P. (1966). Analyt. Biochem. 14, 296.Google Scholar
Hanrahan, J. P., Hooper, A. C. & McCarthy, J. C. (1973). Anim. Prod. 16, 7.Google Scholar
Kielanowski, J. (1972). In Festskrift til Knut Breirem p. 111 [Spildo, L. S., Homb, T. and Hvidsten, H., editors]. Oslo: Mariendals Boktrykkeri A. S. Gjøvidk.Google Scholar
Kownacki, M. & Keller, J. (1978). Genetica Polonica 19, 339.Google Scholar
Kownacki, M., Keller, J. & Gebler, E. (1975). Genetica Polonica 16, 359.Google Scholar
Luff, A. R. & Goldspink, G. (1967). Life Sci. 6, 1821.Google Scholar
Martin, R., White, J., Herbein, J. & Ezekwe, M. O. (1979). Growth 43, 167.Google Scholar
Miller, D. S. & Bender, A. E. (1955). Br. J. Nutr. 9, 382.Google Scholar
Munro, H. N. & Fleck, A. (1969). In Mammalian Protein Metabolism pp. 423525 [Munro, H., editor]. New York: Academic Press.Google Scholar
Needham, A. E. (1964). In The growth process in animals. London: Sir Isaac Pitman and Sons Ltd.Google Scholar
Priestley, G. C. & Robertson, M. S. M. (1973). Genet. Res., Camb. 22, 255.Google Scholar
Pullar, J. D. & Webster, A. J. F. (1977). Br. J. Nutr. 35, 355.CrossRefGoogle Scholar
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Br. J. Nutr. 43, 445.CrossRefGoogle Scholar
Robinson, D. W. & Bradford, G. E. (1969). Growth 33, 221.Google Scholar
Rucklidge, G. J. & McKenzie, J. D. (1980). Lab. Animals 14, 213.Google Scholar
Usinger, W. (1957). Arch. für Physiol. 265, 365.CrossRefGoogle Scholar
Van der Wal, H., Verstegen, M. W. A. & Van der Hel, W. (1976). In Energy Metabolism of Farm Animals, pp. 125128 [Vermorel, M., editor]. Clermont Ferrand: G. de Bussac.Google Scholar
Winick, M. & Noble, A. (1966). J. Nutr. 89, 300.Google Scholar