Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T17:20:10.421Z Has data issue: false hasContentIssue false

The digestion by cattle of grass silage made with formic acid and formic acid–formaldehyde

Published online by Cambridge University Press:  09 March 2007

D. J. Thompson
Affiliation:
Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
D. E. Beever
Affiliation:
Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
C. R. Lonsdale
Affiliation:
Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
M. J. Haines
Affiliation:
Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
S. B. Cammell
Affiliation:
Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
A. R. Austin
Affiliation:
Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A primary growth crop of perennial ryegrass (Lolium perenneL., cv. S23) was partially wilted and ensiled after the application of eitherformic acid–water (1:3, w/v; 7.1 1/t fresh herbage; control diet C) or formic acid–formaldehyde (1:1, w/w; 8·81/t fresh herbage; formaldehyde treated diet F) which supplied 50gHCHO/kg crude protein (nitrogen (N) × 6·25). The two silages were fed separately and a third diet comprising formaldehyde-treated silage, supplemented with urea (20 g/kg dry matter dm) at the time of feeding was also examined (dietFU).

2. The three diets were fed at a level of 16 g dm/kg live weight to six 3- to six-month-old cattle fitted with rumen and re-entrant duodenal cannulas in two 3 × 3 LatinSquare experiments, and measurements were made of the digestion of energy, carbohydrateand N.

3. The formaldehyde-treated silage had a lower content of fermentation acids and ammoma-N and a higher content of water-soluble carbohydrate and total amino acids. The apparent digestibility of organic matter, energy and N were depressed (P < 0·05, P < 0·05 and P < 0·01 respectively) by treatment with formaldehyde, but cellulose and neutral-detergent fibre digestibility were unaffected.

4. Within the rumen the digestion of organic matter, cellulose and neutral-detergent fibre were unaffected by formaldehyde treatment or supplementation with urea. Microbial protein synthesis in the rumen was similar for the three diets (average 131 g/kg apparently digested organic matter in the rumen).

5. The application of formic acid-formaldehyde increased (P < 0·05) the amount of food protein escaping degradation in the rumen (4·76 diet C, 6·89 diet F; 7·07 diet FU g/kg protein intake). The contribution of amino acidsof dietary origin al the duodenum increased (P < 0·05) from 50 (diet C) to 80 (diet F) and 82 (diet FU) g/kg DM intake, and the flow of total amino acids at the duodenum was 33% higher (P < 0·001) in cattle fed formic acid–form aldehyde silage diets compared withthe control silage due to the reduction in degradation of protein at ensiling and in therumen.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminants. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Ash, R. W. (1962). Anim. Prod. 4, 309.Google Scholar
Barry, T. N. (1976 a). J. agric Sci., Camb. 86, 379.CrossRefGoogle Scholar
Barry, T. N. (1976 b). Proc. Nutr. Soc. 35, 221.CrossRefGoogle Scholar
Barry, T. N., Mundell, D. C., Wilkins, R. J. & Beever, D. E. (1978). J. agric. Sci., Camb. 91, 717.CrossRefGoogle Scholar
Beever, D. E. (1980). In Forage Conservation in the 80s. [Thomas, C., editor] Occasional Symposium 11, British Grassland Society, p 131.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F.(1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J. & Cammell, S. B. (1976). J. agric Sci., Camb. 86, 443.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Cammell, S. B. & Harrsion, D. G. (1977). J. agric. Sci., Camb. 88, 61.CrossRefGoogle Scholar
Brown, G. F., Armstrong, D. G. & MacRae, J. C. (1968). Br. vet. J. 124, 78.CrossRefGoogle Scholar
Cammell, S. B. (1977). Tech. Rep. Grassld Res. Inst. No. 24, p. 80.Google Scholar
Canaway, R. J. & Thomson, D. J. (1977). Tech. Rep. Grassld Res. Inst. No. 23, p. 14.Google Scholar
Christian, K. R. & Coup, M. R. (1954). N. Z. Jl Sci. Tech. A36, 328.Google Scholar
Corbett, J. L., Greenhalgh, J. F. D., McDonald, I. & Florence, E. (1960). Br. J. Nutr. 14, 289.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, G. J. (1975). In Digestion and Metabolism in the Ruminant, p. 336 [McDonald, I. W., Warner, A. C. I., editor]Armidale: University of New England Publishing Unit.Google Scholar
Dewar, W. A. & McDonald, P. (1961). J. Sci. Fd Agric. 12, 790.CrossRefGoogle Scholar
Egan, A. R. & Walker, D. J. (1975). Proc. 3rd Wld. Conf. Anim. Prod. p. 552 [Reid, R. L. editor]. Sydney: Sydney University Press.Google Scholar
Elsden, S. R. & Gibson, Q. H. (1954). Biochem. J. 58, 154.CrossRefGoogle Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Grassland Research Institute (1968). Research Techniques in use at the Grassland Research Institute, Hurley, Bull. 45 Commonw. Bur. Fld. Crops, Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Gruber, H. A. & Mellor, E. F. (1968). Analyt. Biochem. 26, 180.CrossRefGoogle Scholar
Hove, E. L. & Lohrey, E. (1976). J. Nutr. 106, 382.CrossRefGoogle Scholar
Jarrett, I. G. (1948). J. Counc. Sci. Ind. Res. Aust. 21, 311.Google Scholar
Kaiser, A. G., England, P. & Osbourn, D. F. (1978). Proc. 5th Silage Conf. Ayr, p. 14.Google Scholar
Lonsdale, C. R., Thomas, C. & Haines, M. J. (1977). J. Br. Grassld. Soc. 32, 171.CrossRefGoogle Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 15.CrossRefGoogle Scholar
Siddons, R. C., Evans, R. T. & Beever, D. E. (1979). Br. J. Nutr. 42, 535.CrossRefGoogle Scholar
Snedecor, G. W. (1956). Statistical Methods, 5th ed. Ames, Iowa: Iowa State College Press.Google Scholar
Terry, R. A. & Osbourn, D. F. (1980). In Forage Conservation in the 80's [Thomas, C. editor] Occasional Symposium 11, British Grassland Society, p. 315.Google Scholar
Thomson, D. J. & Beever, D. E. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 291 [Ruckebusch, Y., and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Thomson, D. J., Beever, D. E., Latham, M. J., Sharpe, M. E. & Terry, R. A. (1978). J. agric. Sci., Camb. 91,1.CrossRefGoogle Scholar
Tilley, J. M. A. & Terry, R. A. (1963). J. Br. Grassld. Soc. 18, 104.CrossRefGoogle Scholar
Van Soest, P. J. & Wine, R. H. (1967). J. Ass. Offic. Analyt. Chem. 50, 50.Google Scholar
Waldo, D. R. (1975). J. Anim. Sci. 41, 424.Google Scholar
Wilkins, R. J., Wilson, R. F. & Woolford, M. K. (1974). Proc. 5th Gen. Mtg Eur. Grassld Fedn Uppsala, Vaxtodling 29, 197.Google Scholar
Wilkinson, J. M., Wilson, R. F. & Barry, T. N. (1976). Outl. Agric. 9, 3.CrossRefGoogle Scholar
Wilson, R. F. & Wilkins, R. J. (1972). J. Sci. Fd Agric. 23, 377.CrossRefGoogle Scholar