Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T14:34:05.540Z Has data issue: false hasContentIssue false

Effect of different levels of dietary molybdenum on copper and Mo metabolism in sheep fed on high levels of Cu

Published online by Cambridge University Press:  09 March 2007

Van Ryssen
Affiliation:
Department of Animal Science, University of Natal, PO Box 375, Pietermaritzburg 3200, South Africa
Stielau W. J.
Affiliation:
Department of Animal Science, University of Natal, PO Box 375, Pietermaritzburg 3200, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Distribution of copper and molybdenum was followed in the body tissues of sheep fed on high levels of Cu (82 mg Cu/sheep per d), sulphur (3·77 g S/sheep per d) and different levels of Mo (0·6 20·8, 38.4 and 58.5 mg Mo/sheep per d).

2. Liver Cu content decreased as Mo intake increased from 0.6 to 38.4 mg/d, but increased again at high intakes of Mo. With an Mo intake of 58.5 mg/d, the Cu content of liver, kidney, lung, spleen and muscle tissue was significantly higher than with an intake of 20.8 mg Mo/d. The trend of increased Cu concentrations in kidneys and plasma was already evident at an Mo intake of 38.4 mg/sheep per d.

3. High positive correlations were observed between Cu and Mo in both the kidney cortex and medulla of the sheep at the two highest Mo treatments.

4. At constant S intake, Mo concentrations in the tissues tended to increase in proportion to Mo intakes. No indication of any detrimental effect due to the accumulation of Mo in the tissues was observed.

5. It was suggested that in the presence of an abundance of Mo, Cu and S, compounds containing these minerals in metabolically unavailable forms accumulate in the body, first in the kidneys, but eventually also in the other tissues of the sheep.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Arthur, D. (1965). J. Nutr. 87, 69.Google Scholar
Barden, P. J. & Robertson, A. (1962). Vet. Rec. 74, 252.Google Scholar
Bracewell, C. D. (1958). Vet. Rec. 70, 342.Google Scholar
Bremner, I. & Young, B. W. (1978). Br. J. Nutr. 39, 325.Google Scholar
Cook, G. A., Lesperance, A. L., Bohman, V. R. & Jensen, E. H. (1966). J. Anim. Sci. 25, 96.CrossRefGoogle Scholar
Cornelius, C. E. & Karneko, J. J. (1963). Clinical Biochemistry of Domestic Animals. New York: Academic Press.Google Scholar
Cunningham, I. J. & Hogan, K. G. (1959). N.Z. JI agric. Res. 2, 134.Google Scholar
Dale, S. E., Ewan, R. C., Speer, V. C. & Zimmerman, D. R. (1973). J. Anim. Sci. 37, 913.Google Scholar
Dick, A. T. (1954). Aust. J. agric. Res. 5, 511.Google Scholar
Dick, A. T. (1956). In Inorganic Nitrogen Metabolism, p. 445 [McElroy, W. D. and Glass, B., editors]. Baltimore: Johns Hopkins Press.Google Scholar
Grace, N. D. & Suttle, N. F. (1979). Br. J. Nutr. 41, 125.CrossRefGoogle Scholar
Huber, J. T., Price, N. O. & Engel, R. W. (1971). J. Anim. Sci. 32, 364.Google Scholar
Huisingh, J. & Matrone, G. (1976). In Molybdenum in the Environment, vol. 1, p. 125 [Chappell, W. R. and Petersen, K. K., editors]. New York: Marcel Dekker Inc.Google Scholar
Lesperance, A. L & Bohman, V. R. (1963). J. Anim. Sci. 22, 656.Google Scholar
Macpherson, A. & Hemingway, R. G. (1965). J. Sci. Fd Agric. 16, 220.Google Scholar
Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavaat, B. G. & Davis, G. K. (1969). J. Nutr. 99, 177.Google Scholar
Miller, R. F., Price, N. O. & Engel, R. W. (1956). J. Nutr. 60, 539.Google Scholar
Mills, C. F. (1960). Proc. Nutr. Soc. 19, 162.Google Scholar
Mills, C. F. & Mitchell, R. L. (1971). Br. J. Nutr. 26, 117.Google Scholar
Rayner, A. A. (1967). Biometry for Agriculture Students. Pietermaritzburg: University of Natal Press.Google Scholar
Ross, D. B. (1966). Br. vet. J. 122, 279.Google Scholar
Ross, D. B. (1970). Res. vet. Sci. 11, 295.Google Scholar
Schwartz, M. K. (1971). Clinical aspects of arginase. In Methods in Enzymology, vol. 17B, p. 857 [Colowick, P. and Kaplan, N. O., editors]. New York: Academic Press.Google Scholar
Smith, B. S. W. & Wright, H. (1975). Clinica chem. Acta 62, 55.Google Scholar
Suttle, N. F. (1974). Proc. Nutr. Soc. 33, 299CrossRefGoogle Scholar
Suttle, N. F. (1975). Br. J. Nutr. 34, 411.Google Scholar
Suttle, N. F. & Field, A. C. (1968). J. comp. Park 78, 351.Google Scholar
Todd, J. R. & Thompson, R. H. (1963). Br. vet. J. 119, 161.Google Scholar
Underwood, E. J. (1977). Trace Elements in Human and Animul Nutrition, 4th ed. New York: Academic Press.Google Scholar
Van Adrichem, P. W. M. (1965). Tijdschr. Diergeneesk. 90, 1371.Google Scholar
Van der Berg, R. & Van der Schee, W. (1973). Tijdschr. Diergeneesk. 97, 378.Google Scholar
Vanderveen, J. E. & Keener, H. A. (1964). J. Dairy Sci. 47, 1224.Google Scholar
Van Ryssen, J. B. J. (1979). S. Afr. J. Anim. Sci. 9, 21.Google Scholar
Van Ryssen, J. B. J. & Stielau, W. J. (1980). S. Afr. J. Anim. Sci. 10, 49.Google Scholar
Ward, G. M. (1978). J. Anim. Sci. 46, 1078.Google Scholar
Wynne, K. N. & McClymont, G. L. (1956). Aust. J. agric. Res. 7, 45.Google Scholar