Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T20:53:14.581Z Has data issue: false hasContentIssue false

Effect of sodium chloride deficiency on basal metabolism in broiler chickens

Published online by Cambridge University Press:  09 March 2007

Elżbieta Walicka
Affiliation:
Department of Animal Nutrition, Institute of Zootechnics, 31–047 Kraków, Sarego 2, Poland
R Ryś
Affiliation:
Department of Animal Nutrition, Institute of Zootechnics, 31–047 Kraków, Sarego 2, Poland
J. Koreleski
Affiliation:
Department of Animal Nutrition, Institute of Zootechnics, 31–047 Kraków, Sarego 2, Poland
M. Pietras
Affiliation:
Department of Animal Nutrition, Institute of Zootechnics, 31–047 Kraków, Sarego 2, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male broiler chickens were given a sodium chloride-deficient or NaCl-adequate diet from 7 to 21 d of age in Expt I and 28 to 56 d of age in Expt 2.

2. NaCl-deficient chickens had a markedly poorer growth and food conversion efficiency than those given the NaCl-adequate diet.

3. NaCl deficiency was associated with an increase in basal metabolic rate and increases in oxygen consumption, heat production and respiratory quotients were also noted. The glycogen content of chicken livers was also higher.

4. Measurements of acid–base balance were found to be changed in NaCl-deficient chickens. Values for pH and bicarbonate content in blood plasma were lowered.

5. NaCl deficiency increased the packed cell volume and thyroxine level in blood plasma. Sodium and chloride contents in blood were lowered.

6. Results are discussed in relation to the decreased food conversion in NaCl-deficient chickens.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Burns, C. H., Cravens, W. W. & Phillips, P. H. (1953). J. Nutr. 50, 317.CrossRefGoogle Scholar
Dewar, W. A. & Whitehead, C. C. (1973). Br. Poult. Sci. 14, 315.Google Scholar
Fregly, M. J. & Taylor, R. E. (1964). Endocrinology 75, 27.Google Scholar
Helbacka, N. V. L., Casterline, J. L., Smith, C. J. & Shaffner, C. S. (1964). Poult. Sci. 43, 138.Google Scholar
Hurwitz, S., Cohen, L., Bar, A. & Bornstein, S. (1973). Poult. Sci. 52, 903.CrossRefGoogle Scholar
Karlson, P. (1970). Kurzes Lehrbuch der Biochemie für Mediziner und Nuturwissenschaftler, vol. 7. Stuttgart, G.Thieme Verlag.Google Scholar
Koreleski, J., Ryś, R. & Walicka, E. (1976). Archs Geflügelk. 6, 193.Google Scholar
Leeson, S., Summers, J. D. & Ferguson, A. E. (1976 a). Poult. Sci. 55, 2455.CrossRefGoogle Scholar
Leeson, S., Summers, J. D. & Moran, E. T. Jr. (1976 b). Wld Poult. Sci. J. 32, 185.Google Scholar
Lumijarvi, D. H., Koike, T. I. & Hill, F. W. (1966). Poult. Sci. 45, 1100.Google Scholar
Matty, A. J. & Green, K. (1962). Life Sci. 9, 487.Google Scholar
Murphy, B. E. P. (1965). J. Lab. clin. Med. 66, 161.Google Scholar
Nott, H. & Combs, G. F. (1969). Poult. Sci. 48, 660.Google Scholar
Ostrowski, W. (1974). Wybrune metody z chemii klinicznej (Some Methods of Clinical Chemistry). Warszawa: PZWL.Google Scholar
Ross, E. (1977). Poult. Sci. 56, 1153.Google Scholar
Ryś, R., Koreleski, J. & Kuchta, M. (1975). Rocz. nauk. Zoot. 2, 181.Google Scholar
Siegel, H. S. (1961). Poult. Sci. 40, 1455.Google Scholar
Skulmowski, J. (1964). Metody badania pasz (Chemical Analysis of Feeds). Warszawa: PWRiL.Google Scholar
Slater, E. C. (1953). Nature, Lond. 172, 975.CrossRefGoogle Scholar
Stefaniak, B. (1964). Polskie Archwm wet. 8, 453.Google Scholar
Summers, J. D., Moran, E. T. & Pepper, W. F. (1967). Poult. Sci. 46, 1557.CrossRefGoogle Scholar
Taylor, R. E. & Fregly, M. J. (1964). Endocrinology 75, 33.Google Scholar
Tosteson, D. C. & Hoffman, J. F. (1960). J. gen. Physiol. 4, 169.Google Scholar