Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T09:48:08.818Z Has data issue: false hasContentIssue false

The effect of the β-2-adrenergic agonist clenbuterol or implantation with oestradiol plus trenbolone acetate on protein metabolism in wether lambs

Published online by Cambridge University Press:  09 March 2007

O. Bohorov
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr Loughborough, Leics. LE12 5RD
P. J. Buttery
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr Loughborough, Leics. LE12 5RD
J. H. R. D. Correia
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr Loughborough, Leics. LE12 5RD
J. B. Soar
Affiliation:
Department of Applied Biochemistry and Food Science, University of Nottingham School of Agriculture, Sutton Bonington, Nr Loughborough, Leics. LE12 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of Revalor (trenbolone acetate plus oestradiol) implantation or the inclusion of clenbuterol (a β-2-adrenergic agonist) in the diet of wether lambs was studied. Using continuous intravenous infusion of [3H]tyrosine the fractional synthetic rate of mixed protein from three separate muscles was measured.

2. Clenbuterol slightly increased growth rate but had a significant (P < 0.02) effect on food conversion efficiency. The weight and protein content of the longissimus dorsi and vastus lateralis muscles were increased but no such changes were observed for the vastus intermedius. For the longissirnus dorsi at least the increase was probably achieved by a reduction in fractional degradation rate of the muscle protein.

3. Revalor significantly increased the growth rate and food conversion efficiency of the animals. This increase was not specific for muscle. Estimated degradation rates of muscle protein were lower in the treated animals.

4. The possible mode of action of these materials was discussed. The results obtained again highlight the importance of protein degradation in controlling growth.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Baker, P. K., Dalrymple, R. H., Ingle, D. L. & Ricks, C. A., Journal of Animal Science 59, 12561261.CrossRefGoogle Scholar
Beermann, D. H., Fishell, V. K., Hogue, D. E., Ricks, C. A. & Dalrymple, R. H. (1985 a). Journal of Animal Science 61, Suppl. 1, 254, Abstr. 116.Google Scholar
Beermann, D. H., Hogue, D. E., Dalrymple, R. H. & Ricks, C. A. (1985 b). Journal of Animal Science 61, Suppl. 1, 255, Abstr. 117.Google Scholar
Berne, R. S., Noakowski, J. & Bechtel, P. J. (1985). Journal of Animal Science 61, Suppl. 1, 256, Abstr. 119.Google Scholar
Buttery, P. J. & Sinnett-Smith, P. A. (1984). In Manipulation of Growth in Farm Animals, pp. 211232 [Roche, J. R. and O'Callaghan, D., editors]. Boston: Montinus Nijhoff.CrossRefGoogle Scholar
Coelho, J. F. S., Galbraith, H. & Topps, J. H. (1981). Animal Production 32, 261266.Google Scholar
Coleman, M. E., Everen, P. A. & Smith, S. B. (1985). Journal of Animal Science 61, Suppl. 1, 264, Abstr. 140.Google Scholar
Dalrymple, R. H. (1984). In Pork Industry Conference, University of Illinois, pp. 93104. Illinois: University of Illionois.Google Scholar
Dalrymple, R. H., Baker, P. K. & Ricks, C. A. (1984). In Proceedings of 1984 Georgia Nutrition Conference for the Feed Industry, pp. 111118. Georgia, USA: University of Georgia.Google Scholar
Dalrymple, R. H., Baker, P. K., Doscher, M. E., Ingle, D. L. & Ricks, C. A. (1985). Journal of Animal Science 61, Suppl. 1, 256.Google Scholar
Dalrymple, R. H., Ricks, C. A., Baker, P. K., Pensack, J. M., Ginger, P. E. & Ingle, D. L. (1983). Federation Proceedings 42, 668, Abstr.Google Scholar
Davidson, J., Mathison, J. & Bone, A. M. (1970). Analyst 95, 181193.CrossRefGoogle Scholar
Deshaies, Y., Willemot, J. & Leblanc, J. (1981). Canadian Journal of Physiology and Pharmacology 59, 113121.CrossRefGoogle Scholar
Duquette, P. F. & Muir, L. A. (1985). Journal of Animal Science 61, Suppl. 1, 165, Abstr. 141.Google Scholar
Emery, P. W., Rothwell, N. J., Stock, M. J. & Winter, P. D. (1984). Bioscience Reports 4, 8391.CrossRefGoogle Scholar
Fain, J. N. & Garcia-Sainz, J. A. (1983). Journal of Lipid Research 24, 945966.CrossRefGoogle Scholar
Garlick, P. J. & Marshall, I. (1972). Journal of Neurochemistry 19, 577583.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochemical Journal 136, 935945.CrossRefGoogle Scholar
Jones, B. N. & Gilligan, J. P. (1983). Journal of Chromatography 266, 471482.CrossRefGoogle Scholar
Jones, R. W., Easter, R. A., McKeith, F. K. & Bechtel, P. J. (1985). Journal of Animal Science 61, 905913.CrossRefGoogle Scholar
Kellas, L. J., Suleiman, A. H., Galbraith, H., Topps, J. H. & Chesworth, J. M. (1982). Animal Production 34, 396, Abstr.Google Scholar
Li, J. B. & Jefferson, L. D. (1977). American Journal of Physiology 232, E243E249.Google Scholar
Lobley, G. E., Connell, A., Mollison, G. S., Brewer, A., Harris, C. I. & Bunchan, V. (1985). British Journal of Nutrition 54, 681694.CrossRefGoogle Scholar
Martinez, J. A., Buttery, P. J. & Pearson, J. T. (1984). British Journal of Nutrition 52, 515521.CrossRefGoogle Scholar
Muir, L. A., Wien, S., Duquette, P. F., Ricks, E. L. & Cordes, E. H. (1983). Journal of Animal Science 56, 13151323.CrossRefGoogle Scholar
Muir, L. A., Wien, S., Duquette, P. F. & Olson, G. (1985). Journal of Animal Science 61, Suppl. 1, 263.CrossRefGoogle Scholar
Odedra, B. R. & Millward, D. J. (1982). Biochemical Journal 204, 663672.CrossRefGoogle Scholar
Quirke, J. E. & Sheeham, W. (1981). Irish Journal of Agricultural Research 20, 125135.Google Scholar
Rannels, S. R. & Jefferson, L. S. (1980). American Journal of Physiology 238, E564E572.Google Scholar
Ricks, C. A., Dalrymple, R. H., Baker, P. K. & Ingle, D. L. (1984). Journal of Animal Science 59, 12471255.CrossRefGoogle Scholar
Rothwell, N. J. & Stock, M. J. (1983). Journal of Physiology 340, 62P.Google Scholar
Rothwell, N. J., Stock, M. J. & Winter, P. D. O'B. (1984). Proceedings of the Nutrition Society 43, 71A.Google Scholar
Singh, S. B., Galbraith, H., Henderson, G. D. & Forbes, G. (1984). Proceedings of the Nutrition Society 43, 41A.Google Scholar
Sinnett-Smith, P. A., Dumelow, N. W. & Buttery, P. J. (1983). British Journal of Nutrition 50, 225234.CrossRefGoogle Scholar
Sinnett-Smith, P. A., Palmer, C. A. & Buttery, P. J. (1987). Hormone and Metabolic Research (in the Press).Google Scholar
Stiles, G. L., Caron, M. G. & Lefkowitz, R. J. (1984). Physiological Review 64, 661743.CrossRefGoogle Scholar
Tischler, M. E. (1981). Life Science 28, 25692576.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1976). British Journal of Nutrition 36, 575579.CrossRefGoogle Scholar
Vernon, B. G. & Buttery, P. J. (1978). Animal Production 26, 19.Google Scholar
Waalkes, T. P. & Udenfriend, S. (1957). Journal of Laboratory and Clinical Medicine 50, 733736.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland.Google Scholar
Williams, R. S., Caron, M. G. & Daniel, K. (1984). American Journal of Physiology 246, E160E167.Google Scholar