Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T04:17:23.839Z Has data issue: false hasContentIssue false

Effects of variations in the proportions of saturated, monounsaturated and polyunsaturated fatty acids in the rat diet on spleen lymphocyte functions

Published online by Cambridge University Press:  09 March 2007

Nicola M. Jeffery
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, OxfordOX1 3QU
Mario Cortina
Affiliation:
Department of Statistics, University of Oxford, South Parks Road, OxfordOX1 3QU
Eric A. Newsholme
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, OxfordOX1 3QU
Philip C. Calder
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, OxfordOX1 3QU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To obtain further information about the immunomodulatory effects of specific dietary fatty acids, weanling male rats were fed for 6 weeks on high-fat (178 g/kg) diets which differed according to the principal fatty acids present. The nine diets used differed in their contents of palmitic, oleic, linoleic and α-linolenic acids; as a result the total polyunsaturated fatty acid (PUFA) content and the PUFA: saturated fatty acid ratio varied (from 17·8 to 58·5 g/lW g fatty acids and from 0·28 to 5·56 respectively). The n−6 PUFA: n−3 PUFA ratio was kept constant in all diets at approximately 7·0.The fatty acid compositions of the serum and of spleen lymphocytes were significantly influenced by that of the diet fed. The ex vivo proliferation of spleen lymphocytes decreased as the levelof oleic acid in the diet increased. Spleen natural killer cell activity decreased as the oleic acid content of the diet increased and increased as the palmitic acid content of the diet increased. The extent of the effects of these fatty acids on lymphocyte functions was modified by the nature of the background fatty acid composition of the diet.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Bates, D., Cartlidge, N. E. F., French, J. M., Jackson, M. J., Nightingale, S., Shaw, D. A., Smith, S., Woo, E., Hawkins, S. A., Millar, J. H. D., Belin, J., Conroy, D. M., Gill, S. K., Sidey, M., Smith, A. D., Thompson, R. H. S., Zilkha, K., Gale, M. & Sinclair, H. M. (1989). A double-blind controlled trial of long chain n-3 polyunsaturated fatty acids in the treatment of multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry 52, 1822.CrossRefGoogle ScholarPubMed
Berger, A., German, J. B., Chiang, B. L., Ansari, A. A., Keen, C. L., Fletcher, M. P. & Gershwin, M. R. (1993). Influence of feeding unsaturated fats on growth and immune status of mice. Journal of Nutrition 123, 225233.Google ScholarPubMed
Bittiner, S. B., Tucker, W. F. G., Carhwight, I. & Bleehen, S. S. (1988). A double-blind, randomised, placebo-controlled trial of fish oil in psoriasis. Lancet i, 378380.CrossRefGoogle Scholar
Calder, P. C. (1995). Fatty acids, dietary lipids and lymphocyte functions. Biochemical Society Transactions 23, 302309.Google Scholar
Calder, P. C. (1996 a). Effects of fatty acids and dietary lipids on cells of the immune system. Proceedings of the Nutrition Society 55, 127150.CrossRefGoogle ScholarPubMed
Calder, P. C. (1996 b). Immunomodulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Proceedings of the Nutrition Society 55, 737774.Google Scholar
Calder, P. C., Bevan, S. J. & Newsholme, E. A. (1992). The inhibition of T-lymphocyte proliferation by fatty acids is via an eicosanoid-independent mechanism. Immunology 75, 108115.Google ScholarPubMed
Calder, P. C., Bond, J. A., Bevan, S. J., Hunt, S. V. & Newsholme, E. A. (1991). Effect of fatty acids on the proliferation of concanavalin A-stimulated rat lymph node lymphocytes. Intertional Journal of Biochemistry 23, 579588.Google ScholarPubMed
Calder, P. C., Costa-Rosa, L. F. B. P. & Curi, R. (1995). Effects of feeding lipids of different fatty acid compositions upon rat lymphocyte proliferation. Life Sciences 56, 455463.CrossRefGoogle ScholarPubMed
Calder, P. C. & Newsholme, E. A. (1992 a). Unsaturated fatty acids suppress interleukin-2 production and transferrin receptor expression by concanavalin A-stimulated rat lymphocytes. Mediators of Inflammation 1, 107115.Google Scholar
Calder, P. C. & Newsholme, E. A. (1992 b). Polyunsaturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clinical Science 82, 695700.CrossRefGoogle ScholarPubMed
Calder, P. C., Yaqoob, P., Harvey, D. J., Watts, A. & Newsholme, E. A. (1994 a). The incorporation of fatty acids by lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochemical Journal 300, 509518.Google Scholar
Calder, P. C., Yaqoob, P. & Newsholme, E. A. (1994 b). Triacylglycerol metabolism by lymphocytes and the effect of triacylglycerols upon lymphocyte proliferation. Biochemical Journal 298, 605611.Google Scholar
Cleland, L. G., French, J. K., Betts, W. H., Murphy, G. A. & Elliott, M. J. (1988). Clinical and biochemical effects of dietary fish oil supplements in rheumatoid arthritis. Journal of Rheumutology 15, 14711475.Google ScholarPubMed
Das, U. N. (1994). Beneficial effect of eicosapentaenoic and docosahexaenoic acids in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins, Leukotrienes and Essential Fatty Acids 51, 207213.Google Scholar
Erickson, K. L. (1984). Dietary fat influences on murine melanoma growth and lymphocyte-mediated cytotoxicity. Journal of the National Cancer Institute 72, 115120.Google Scholar
Fowler, K. H., McMurray, D. N., Fan, Y.-Y., Aukema, H. M. & Chapkin, R. S. (1993). Purified dietary n−3 polyunsaturated fatty acids alter diacylglycerol mass and molecular species composition in concanavalin A-stimulated murine splenocytes. Biochimica et Biophysica Acta 1210, 8996.CrossRefGoogle ScholarPubMed
Fritsche, K. L. & Cassity, N. A. (1992) Dietary n−3 fatty acids reduce antibody-dependent cell cytotoxicity and alter eicosanoid release by chicken immune cells. Poultry Science 71, 16461657.CrossRefGoogle ScholarPubMed
Fritsche, K. L., Cassity, N. A. & Huang, S.-C. (1991). Effect of dietary fat source on antibody production and lymphocyte proliferation in chickens. Poultry Science 70, 611–417.Google Scholar
Fritsche, K. L. & Johnston, P. V. (1989). Modulation of eicosanoid production and cell-mediated cytotoxicity by dietary α-linolenic acid in BALB/c mice. Lipids 24, 305311.CrossRefGoogle ScholarPubMed
Fritsche, K. L. & Johnstone, P. V. (1990). Effect of dietary omega-3 fatty acids on cell-mediated cytotoxicity in BALB/c mice. Nutrition Research 10, 577588.CrossRefGoogle Scholar
Fujikawa, M., Yamashita, N., Yamazaki, K., Sugiyama, E., Suzuki, H. & Hamazaki, T. (1992). Eicosapentaenoic acid inhibits antigen-presenting cell function of murine splenocytes. Immunology 75, 330335.Google ScholarPubMed
Gallai, V., Sarchielli, P., Trequattrini, A., Franceschini, M., Floridi, A., Firenze, C., Alberti, A., Di Benedetto, D. & Stragliotto, E. (1993). Cytokine secretion and eicosanoid production in the peripheral blood mononuclear cells of MS patients undergoing dietary supplementation with n−3 polyunsaturated fatty acids. Journal of Neuroimmunology 56, 143153.Google Scholar
Gibney, M. J. & Hunter, B. (1993). The effects of short-and long-term supplementation with fish oil on the incorporation of n−3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. European Journal of Clinical Nutrition 47, 255259.Google ScholarPubMed
Grimminger, F., Fuhrer, D., Papavassilis, C., Schlotzer, E., Mayer, K., Heuer, K.-U., Kiss, L., Walmrath, D., Piberhofer, S., Lubbecke, F., Kramer, H.-J., Stevens, J., Schutterle, G. & Seeger, W. (1993). Influence of intravenous n-3 lipid supplementation on fatty acid profiles and lipid mediator generation in a patient with severe ulcerative colitis. European Journal of Clinical Investigation 23, 706715.Google Scholar
Hinds, A. & Sanders, T. A. B. (1993). The effect of increasing levels of dietary fish oil rich in eicosapentaenoic and docosahexaenoic acids on lymphocyte phospholipid fatty acid composition and cell-mediated immunity in the mouse. British Journal of Nutrition 69, 423429.CrossRefGoogle Scholar
Hodge, L., Peat, J. K. & Salome, C. (1994). Increased consumption of polyunsaturated oils may be a cause of increased prevalence of childhood asthma. Australian and New Zealand Journal of Medicine 24, 727.CrossRefGoogle ScholarPubMed
Homan van der Heide, J. J., Bilo, H. J. G., Donker, J. M., Wilmink, J. M. & Tegzess, A. M. (1993). Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants. New England Journal of Medicine 329, 769773.Google Scholar
Jeffery, N. M., Sanderson, P., Newsholme, E. A. & Calder, P. C. (1997). Effects of varying the type of saturated fatty acid in the rat diet upon serum lipid levels and spleen lymphocyte functions. Biochimica et Biophysica Acta (In the Press).Google Scholar
Jeffery, N. M., Sanderson, P., Sherrington, E. J., Newsholme, E. A. & Calder, P. C. (1996 a). The ratio of n-6 to n-3 polyunsaturated fatty acids in the rat diet alters serum lipid levels and lymphocyte functions. Lipids 31, 737745.Google Scholar
Jeffery, N. M., Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1996 b). The effects of olive oil upon rat serum lipid levels and lymphocyte functions appear to be due to oleic acid. Annals of Nutrition and Metabolism 40, 7180.Google Scholar
Kelley, D. S., Nelson, G. J., Serrato, C. M., Schmidt, P. C. & Branch, L. B. (1988). Effects of type of dietary fat on indices of immune status of rabbits. Journal of Nutrition 118, 13761384.CrossRefGoogle ScholarPubMed
Kremer, J. M., Lawrence, D. A., Jubiz, W., Di Giacomo, R., Rynes, K., Bartholomew, L. E. & Sherman, M.(1990). Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Arthritis and Rheumatism 33, 810820.Google Scholar
Kromann, N. & Green, A. (1980). Epidemiological studies in the Upernavik District, Greenland. Acta Medica Scandinavica 208, 401406.CrossRefGoogle ScholarPubMed
Kumar, G. S., Das, U. N., Kumar, K. V., Madhavi, N., Das, N. P. &, Tan, B. K. H. (1992). Effect of n-6 and n-3 fatty acids on the proliferation of human lymphocytes and their secretion of TNF-α and IK-2 in vitro. Nutrition Research 12, 815823.Google Scholar
Linos, A., Kaklamanis, E., Kontomerkos, A., Koumantaki, Y., Gazi, S., Vaiopoulos, G., Tsokos, G.C. & Kaklamanis, P. (1991). The effect of olive oil and fish consumption on rheumatoid arthritis - A case control study. Scandinavian Journal of Rheumatology 20, 419426.Google Scholar
Marshall, L. A. & Johnston, P. V. (1985) The influence of dietary essential fatty acids on rat immunocompetent cell prostaglandin synthesis and mitogen-induced blastogenesis. Jouml of Nutrition 115, 15721580.CrossRefGoogle ScholarPubMed
Mertin, J. & Hunt, R. (1976). Influence of polyunsaturated fatty acids on survival of skin allografts and tumor incidence in mice. Proceedings of the National Academy of Science USA 73, 928931.Google Scholar
Mertin, J., Hughes, D. & Stewart-Wynne, E. (1974). PHA transformation in MS: inhibition by linoleic acid. Lancet i, 10051006.CrossRefGoogle Scholar
Mertin, J. & Meade, C. J. (1977) Relevance of fatty acids to multiple sclerosis. British Medical Bulletin 33, 6771.Google Scholar
Mertin, J., Stackpole, A. & Shumway, S. (1985). Nutrition and immunity: the immunoregulatory effect of n-6 essential fatty acids is mediated through prostaglandin E. International Archives of Allergy and Applied Immunology 77, 390395.CrossRefGoogle ScholarPubMed
Meydani, S. N., Yogeeswaran, G., Liu, S., Baskar, S. & Meydani, M. (1988). Fish oil and tocopherol-induced changes in natural killer cell-mediated cytotoxicity and PGE2 synthesis in young and old mice. Journal of Nutrition 118, 12451252.CrossRefGoogle ScholarPubMed
Olson, L. M., Clinton, S. K., Everitt, J. I., Johnston, P. V. & Visek, W. J. (1987). Lymphocyte activation, cell-mediated cytotoxicity and their relationship to dietary fat-enhanced mammary tumorigenesis in C3H/OUJ mice. Journal of Nutrition 117 955963.Google Scholar
Rola-Pleszczynski, M., Gagnon, L. & Sirois, P. (1983). Leukohiene B4 augments human natural cytotoxic cell activity. Biochemical and Biophysical Research Communications 113, 531537.CrossRefGoogle ScholarPubMed
Sanderson, P., Yaqoob, P. & Calder, P. C. (1995 a) Effects of dietary lipid manipulation upon graft vs. host and host vs. graft responses in the rat. Cellular Immunology 164, 240247.Google Scholar
Sanderson, P., Yaqoob, P. & Calder, P. C. (1995 b). Effects of dietary lipid manipulation upon rat spleen lymphocyte functions and the expression of lymphocyte surface molecules. Journal of Nutritional and Environmental Medicine 5, 119132.Google Scholar
Sherrington, E. J., Yaqoob, P. & Calder, P. C. (1994). Differential effects of high fat diets on adipose tissue deposition in the rat. Proceedings of the Nutrition Society 53, 69A.Google Scholar
Shoda, R., Matsueda, K., Yamato, S. & Umeda, N. (1996). Epidemiologic analysis of Crohn disease in Japan:increased dietary intake of n−6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. American Journal of Clinical Nutrition 63, 741745.CrossRefGoogle Scholar
Soyland, E., Nenseter, M. S., Braathen, L. & Drevon, C. A. (1993) Very long chain n−3 and n−6 polyunsaturated fatty acids inhibit proliferation of human T-lymphocytes in vitro. European Journal of Clinical Investigation 23, 112121.CrossRefGoogle ScholarPubMed
Sperling, R. I., Weinblatt, M. E., Robin, J. L., Ravalese, J., Hoover, R. L., House, F., Coblyn, J. S., Fraser, P. A., Spur, B. W., Robinson, D. R., Lewis, R. A. & Austen, K. F. (1987). Effects of dietary supplementation with marine fish oil on leukocyte lipid mediator generationand function in rheumatoid arthritis. Arthritis and Rheumatism 30, 987988.Google Scholar
Swank, R. L. (1950). Multiple sclerosis: a correlation of its incidence with dietary fat. American Journal of Medical Science 220, 421430.CrossRefGoogle ScholarPubMed
Tiwari, R. K., Clandinin, M. T., Cinader, B. & Goh, Y. K. (1987). Effect of high polyunsaturated fat diets on the composition of B cell and T cell membrane lipids. Nutrition Research 7, 489498.CrossRefGoogle Scholar
Yamashita, N., Maruyama, M., Yamazaki, K., Hamazaki, T. & Yano, S. (1991). Effect of eicosapentaenoic and docosahexaenoic acid on natural killer cell activity in human peripheral blood lymphocytes. Clinical Immunology and Immunopathology 59, 335345.CrossRefGoogle ScholarPubMed
Yaqoob, P. & Calder, P. C. (1995). The effects of dietary lipid manipulation on the production of murine T-cell-derived cytokines. Cytokine 7, 548553.Google Scholar
Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1994 a). The effect of dietary lipid manipulation on rat lymphocyte subsets and proliferation. Immunology 82, 603610.Google ScholarPubMed
Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1994 b). Inhibition of natural killer cell activity by dietary lipids. Immunology Letters 41, 241247.Google Scholar
Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1995 a). Influence of cell culture conditions on diet-induced changes in lymphocyte fatty acid composition. Biochimica et Biophysica Acta 1255, 333340.Google Scholar
Yaqoob, P., Sherrington, E. J., Jeffery, N. M., Sanderson, P., Harvey, D. J., Newsholme, E. A. & Calder, P. C.(1995 b). Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. International Journal of Biochemistry and Cell Biology 27, 297310.CrossRefGoogle ScholarPubMed
Ziboh, V. A., Cohen, K. A., Ellis, C. N., Miller, C., Hamilton, T. A., Kragballe, K., Hydrick, C. R. & Voorhees, J. J. (1986). Effects of dietary supplementation of fish oil on neutrophil and epidermal fatty acids: modulation of clinical course of psoriatic lesions. Archives of Dermutology 122, 12771282.CrossRefGoogle Scholar