Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T13:38:44.871Z Has data issue: false hasContentIssue false

Intestinal alkaline phosphatase and inorganic pyrophosphatase activities in the zinc-deficient rat

Published online by Cambridge University Press:  24 July 2007

R. B. Williams
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of zinc deficiency on the activities of rat duodenal alkaline phosphatase and inorganic pyrophosphatase has been investigated.

2. Zn deficiency adversely affected the activity of these enzymes before growth rate and food intake were reduced.

3. The level of food intake was without effect on the activity of alkaline phosphatase but markedly influenced that of inorganic pyrophosphatase.

4. The relevance of changes in the activities of Zn-dependent intestinal enzymes to the food intake of Zn-deficient rats is discussed.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Bartlett, G. R. (1959). J. biol. Chem. 234, 466.CrossRefGoogle Scholar
Britton, H. T. S. & Robinson, R. A. (1931). J. chem. Soc. p. 1456.CrossRefGoogle Scholar
Cox, R. P. & Griffin, M. J. (1965). Lancet ii, 1018.Google Scholar
Engstrom, L. (1961). Biochim. biophys. Acta 52, 36.CrossRefGoogle Scholar
Fernley, H. N. & Walker, P. G. (1967). Biochem. J. 104, 1011.CrossRefGoogle Scholar
Hove, E., Elvehjem, C. A. & Hart, E. B. (1940). J. biol. Chem. 134, 425.Google Scholar
Kfoury, G. A., Reinhold, J. G. & Simonian, S. J. (1968). J. Nutr. 95, 102.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Luecke, R. W., Olman, M. E. & Baltzer, B. V. (1968). J. Nutr. 94, 344.CrossRefGoogle Scholar
Mathies, J. C. (1958). J. biol. Chem. 233, 1121.Google Scholar
Mills, C. F., Peterson, P. J., Quarterman, J., Williams, R. B. & Dalgdrno, A. C. (1969). Am. J. clin. Nutr. 22, 1240.CrossRefGoogle Scholar
Mills, C. F., Quarterman, J., Williams, R. B., Dalgarno, A. C. & Panic, B. (1967). Biochem. J. 102, 712.Google Scholar
Moss, D. W., Eaton, R. H., Smith, J. K. & Whitby, L. G. (1967). Biochem. J. 102, 53.Google Scholar
Nason, A., Kaplan, N. O. & Colowick, S. P. (1951). J. biol. Chem. 188, 397.Google Scholar
Plocke, D. J., Levinthal, C. & Vallee, B. L. (1962). Biochemistry, Easton 1, 373.CrossRefGoogle Scholar
Plocke, D. J. & Vallee, B. L. (1962). Biochemistry, Easton 1, 1039.CrossRefGoogle Scholar
Price, C. A. & Vallee, B. L. (1962). Plant Physiol. 37, 428.CrossRefGoogle Scholar
Quarterman, J., Williams, R. B. & Humphries, W. R. (1970). Br. J. Nutr. 24, 1049.Google Scholar
Snaith, S. M. & Lewy, G. A. (1969). Biochem. J. 114, 25.CrossRefGoogle Scholar
Todd, W. R., Elvehjem, C. A. & Hart, E. B. (1934). Am. J. Physiol. 107, 146.Google Scholar
Trubowitz, S., Feldman, D., Morgenstern, S. W. & Hunt, V. M. (1961). Biochem. J. 80, 369.CrossRefGoogle Scholar
Wacker, W. E. C. (1962). Biochemistry, Easton 1, 859.CrossRefGoogle Scholar
Williams, R. B. & Chesters, J. K. (1970). Br. J. Nutr. 24, 1053.CrossRefGoogle Scholar
Williams, R. B. & Mills, C. F. (1970). Br. J. Nutr. 24, 989.CrossRefGoogle Scholar
Wilson, I. B., Dayan, J.& Cyr, K.(1964). J. biol. Chem. 239, 4182.CrossRefGoogle Scholar