Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:12:44.630Z Has data issue: false hasContentIssue false

Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3

Published online by Cambridge University Press:  09 March 2007

Jennifer L. Donovan
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
Adam Lee
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
Claudine Manach*
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
Laurent Rios
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
Christine Morand
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
Augustin Scalbert
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
Christian Rémésy
Affiliation:
Laboratoire des Maladies Métaboliques et Micronutriments, INRA, 63122 Saint-Genès Champanelle, France
*
*Corresponding author: Dr Claudine Manach, fax +33 4 73 62 4638, email manach@clermont.inra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Flavanols are the most abundant flavonoids in the human diet where they exist as monomers, oligomers and polymers. In the present study, catechin, the procyanidin dimer B3 and a grapeseed extract containing catechin, epicatechin and a mixture of procyanidins were fed to rats in a single meal. After the meals, catechin and epicatechin were present in conjugated forms in both plasma and urine. In contrast, no procyanidins or conjugates were detected in the plasma or urine of any rats. Procyanidins were not cleaved into bioavailable monomers and had no significant effects on the plasma levels or urinary excretion of the monomers when supplied together in the grapeseed extract. We conclude that the nutritional effects of dietary procyanidins are unlikely to be due to procyanidins themselves or monomeric metabolites with the intact flavonoid-ring structure, as they do not exist at detectable concentrations in vivo. Future research should focus on other procyanidin metabolites such as phenolic acids and on the effects of the unabsorbed oligomers and polymers on the human gastrointestinal tract.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Abia, R & Fry, SC (2001) Degradation and metabolism of 14C-labelled proanthocyanidins from carob (Ceratonia siliqua) pods in the gastrointestinal tract of the rat. Journal of Science in Food and Agriculture 81, 11561165.CrossRefGoogle Scholar
Arts, I, Hollman, P, Feskens, E, de Mesquita, H & Kromhout, D (2001) Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. European Journal of Clinical Nutrition 55, 7681.CrossRefGoogle Scholar
Baba, S, Osakabe, N, Yasuda, A, Natsume, M, Takizawa, T, Nakamura, T & Terao, J (2000) Bioavailability of (-)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radical Research 33, 635641.CrossRefGoogle ScholarPubMed
Clifford, AJ, Ebeler, SE, Ebeler, JD, Bills, ND, Hinrichs, SH, Teissedre, PL & Waterhouse, AL (1996) Delayed tumor onset in transgenic mice fed an amino acid-based diet supplemented with red wine solids. American Journal of Clinical Nutrition 64, 748756.CrossRefGoogle ScholarPubMed
Damianaki, A, Bakogeorgou, E, Kampa, M, Notas, G, Hatzoglou, A, Panagiotou, S, Gemetzi, C, Kouroumalis, E, Martin, PM & Castanas, E (2000) Potent inhibitory action of red wine polyphenols on human breast cancer cells. Journal of Cellular Biochemistry 78, 429441.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Das, NP (1971) Studies on flavonoid metabolism. Absorption and metabolism of (+)-catechin in man. Biochemistry and Pharmacology 20, 34353445.CrossRefGoogle ScholarPubMed
de Pascual-Teresa, S (1999) Analisis de Taninos Condensados en Alimentos (Analysis of condensed tannins in food). p. 181Salamanca: Universidad de Salamanca.Google Scholar
de Pascual-Teresa, S, Santos-Buelga, C & Rivas-Gonzalo, J (2000) Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. Journal of Agricultural and Food Chemistry 48, 53315337.CrossRefGoogle ScholarPubMed
Déprez, S, Brézillon, C, Rabot, S, Philippe, C, Mila, I, Lapierre, C & Scalbert, A (2000) Polymeric proanthocyanidins are catabolized by a human colonic microflora into low molecular weight phenolic acids. Journal of Nutrition 130, 27332738.CrossRefGoogle ScholarPubMed
Déprez, S, Mila, I, Scalbert, A, Huneau, J-F & Tomé, D (2001) Transport of proanthocyanidin dimer, trimer and polymer across monolayers of human intestinal epithelial Caco-2 cells. Journal of Nutrition (In the Press).Google ScholarPubMed
Déprez, S & Scalbert, A (1999) [14C]-biolabelling of (+)-catechin and proanthocyanidin oligomers in willow-tree cuttings. Journal of Agricultural and Food Chemistry 47, 42194230.CrossRefGoogle Scholar
Donovan, JL, Bell, JR, Kasim-Karakas, S, German, JB, Walzem, RL, Hansen, RJ & Waterhouse, AL (1999 a) Catechin is present as metabolites in human plasma after consumption of red wine. Journal of Nutrition 129, 16621668.CrossRefGoogle ScholarPubMed
Donovan, JL, Kasim-Karakas, S, German, JB & Waterhouse, AL (2002) Urinary excretion of catechin metabolites by human subjects after red wine consumption. British Journal of Nutrition 87, 3137.CrossRefGoogle ScholarPubMed
Donovan, JL, Luthria, DL, Stremple, P & Waterhouse, AL (1999 b) Analysis of (+)-catechin, (-)-epicatechin and their 3′- and 4′-O-methylated analogs. A comparison of sensitive methods. Journal of Chromatography B 2, 277283.CrossRefGoogle Scholar
Foo, L, Lu, Y, Howell, A & Vorsa, N (2000) A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic p-fimbriated escherichia coli. Journal of Natural Products 63, 12251228.CrossRefGoogle ScholarPubMed
Groenewoud, G & Hundt, HKL (1986) The microbial metabolism of condensed (+)-catechins by rat-caecal microflora. Xenobiotica 16, 99107.CrossRefGoogle ScholarPubMed
Guyot, S, Marnet, N, Laraba, D, Sanoner, P & Drilleau, J-F (1998) Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien). Journal of Agricultural and Food Chemistry 46, 16981705.CrossRefGoogle Scholar
Hackett, AM, Griffiths, LA, Broillet, A & Wermeille, M (1983) The metabolism and excretion of (+)-[14C]cyanidol-3 in man following oral administration. Xenobiotica 13, 279286.CrossRefGoogle Scholar
Hagerman, A, Riedl, K & Rice, R (1999) Tannins as biological antioxidants. Basic Life Sciences 66, 495505.Google ScholarPubMed
Hammerstone, JF, Lazarus, SA, Mitchell, AE, Rucker, R & Schmitz, HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography mass spectrometry. Journal of Agricultural and Food Chemistry 47, 490496.CrossRefGoogle ScholarPubMed
Hammerstone, JF, Lazarus, SA & Schmitz, HH (2000) Proanthocyanidin content and variation in some commonly consumed foods. Journal of Nutrition 130, 2086S2092S.CrossRefGoogle ScholarPubMed
Harmand, MF & Blanquet, P (1978) The fate of total flavanolic oligomers (oft) extracted from Vitis vinifera l. In the rat. European Journal of Drug Metabolism and Pharmokinetics 3, 1530.CrossRefGoogle Scholar
Hayek, T, Fuhrman, B, Vaya, J, Rosenblat, M, Belinky, P, Coleman, R, Elis, A & Aviram, M (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice following consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arteriosclerosis Thrombosis and Vascular Biology 17, 27442752.CrossRefGoogle ScholarPubMed
Hemingway, RW & McGraw, GW (1983) Kinetics of acid catalysed cleavage of procyanidins. Journal of Wood Chemistry and Technology 3, 421435.CrossRefGoogle Scholar
Jimenez-Ramsey, LM, Rogler, JC, Housley, TL, Butler, LG & Elkin, RG (1994) Absorption and distribution of C-14-labelled condensed tannins and related sorghum phenolics in chickens. Jounal of Agricultural and Food Chemistry 42, 963967.CrossRefGoogle Scholar
Keevil, J, Osman, H, Reed, J & Folts, J (2000) Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. Journal of Nutrition 130, 5356.CrossRefGoogle ScholarPubMed
Koga, T, Moro, K, Nakamori, K, Yamakoshi, J, Hosoyama, H, Kataoka, S & Ariga, T (1999) Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds. Jounal of Agricultural and Food Chemistry 47, 18921897.CrossRefGoogle ScholarPubMed
Laparra, J, Michaud, J & Masquelier, J (1977) Etude pharmacocinétique des oligomères flavanoliques (Pharmacokinetics study of oligomeric flavanols). Plantes Medicinales et Phytothérapie 11, 133142.Google Scholar
Lee, M-JWang, Z-YLi, H, Chen, L, Sun, Y, Gobbo, S, Balentine, DA & Yang, CS (1995) Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiology Biomarkers Prevention 4, 393399.Google ScholarPubMed
Li, C, Lee, M, Sheng, S, Meng, X, Prabhu, S, Winnik, B, Huang, B, Chung, J, Yan, S, Ho, C & Yang, C (2000) Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chemical Research in Toxicology 13, 177184.CrossRefGoogle ScholarPubMed
Liao, SS, Umekita, Y, Guo, JT, Kokontis, JM & Hiipakka, RA (1995) Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Letters 96, 239243.CrossRefGoogle ScholarPubMed
Pietta, P, Simonetti, P, Gardana, C, Brusamolino, A, Morazzoni, P & Bombardelli, E (1998) Catechin metabolites after intake of green tea infusions. Biofactors 8, 111118.CrossRefGoogle ScholarPubMed
Pingzhang, Y, Jinying, Z, Shujun, C, Hara, Y, Quingfan, Z & Zhengguo, L (1994) Experimental studies of the inhibitory effects of green tea catechin on mice large intestinal cancers induced by 1,2-dimethylhydrazine. Cancer Letters 79, 3338.CrossRefGoogle Scholar
Piskula, MK & Terao, J (1998) Accumulation of (-)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. Jounal of Nutrition 128, 11721178.CrossRefGoogle ScholarPubMed
Plumb, GW, de Pascual-Teresa, S, Santos-Buelga, C, Cheynier, V & Williamson, G (1998) Antioxidant properties of catechins and proanthocyanidins: Effect of polymerisation, galloylation and glycosylation. Free Radical Research 29, 351358.CrossRefGoogle ScholarPubMed
Putter, M, Grotemeyer, KH, Wurthwein, G, Araghi-Niknam, M, Watson, RR, Hosseini, S & Rohdewald, P (1999) Inhibition of smoking-induced platelet aggregation by aspirin and pychogenol. Thrombosis Research 95, 155161.CrossRefGoogle Scholar
Rein, D, Lotito, S, Holt, RR, Keen, CL, Schmitz, HH & Fraga, CG (2000 a) Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. Journal of Nutrition 130, 2109S2114S.CrossRefGoogle ScholarPubMed
Rein, D, Paglieroni, TG, Pearson, DA, Wun, T, Schmitz, HH, Gosselin, R & Keen, CL (2000 b) Cocoa and wine polyphenols modulate platelet activation and function. Jounal of Nutrition 130, 2120S2126S.CrossRefGoogle ScholarPubMed
Richelle, M, Tavazzi, I, Enslen, M & Offord, EA (1999) Plasma kinetics in man of epicatechin from black chocolate. European Jounal of Clinical Nutrition 53, 2226.CrossRefGoogle ScholarPubMed
Santos-Buelga, C & Scalbert, A (2000) Proanthocyanidins and tannin-like compounds: Nature, occurrence, dietary intake and effects on nutrition and health. Jounal of Food Science and Agriculture 80, 10941117.3.0.CO;2-1>CrossRefGoogle Scholar
Sato, M, Maulik, G, Ray, P, Bagchi, D & Das, D (1999) Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury. Jounal of Molecular and Cellular Cardiology 31, 12891297.CrossRefGoogle ScholarPubMed
Scalbert, A & Williamson, G (2000) Dietary intake and bioavailability of polyphenols. Jounal of Nutrition 130, 2073S2085S.CrossRefGoogle ScholarPubMed
Scheline, RR (1970) The metabolism of (+)-catechin to hydroxyphenylvaleric acids by the intestinal microflora. Biochimica et Biophysica Acta 222, 228230.CrossRefGoogle Scholar
Schramm, DD, Donovan, JL, Kelly, PA, Waterhouse, AL & German, JB (1998) Differential effects of small and large molecular weight wine phytochemicals on endothelial cell eicosanoid release. Jounal of Agricultural and Food Chemistry 46, 19001905.CrossRefGoogle Scholar
Schramm, DD, Wang, JF, Holt, RR, Ensunsa, JL, Gonsalves, JL, Lazarus, SA, Schmitz, HH, German, JB & Keen, CL (2001) Chocolate procyanidins decrease the leukotriene–prostacyclin ratio in humans and human aortic endothelial cells. American Journal of Clinical Nutrition 73, 3640.CrossRefGoogle ScholarPubMed
Spencer, JP, Chaudry, F, Pannala, AS, Srai, SK, Debnam, E & Rice-Evans, C (2000) Decomposition of cocoa procyanidins in the gastric milieu. Biochemical and Biophysical Research Communications 272, 236241.CrossRefGoogle ScholarPubMed
Spencer, JPE, Schroeter, H, Shenoy, B, Srai, KS, Debnam, ES & Rice-Evans, C (2001) Epicatechin is the primary bioavailable form of the procyanidin dimers B2 and B5 after transfer across the small intestine. Biochemical and Biophysical Research Communications 285, 558593.CrossRefGoogle ScholarPubMed
Terrill, TH, Waghorn, GC, Woolley, DJ, McNabb, WC & Barry, TN (1994) Assay and digestion of 14C-labelled condensed tannins in the gastrointestinal tract of sheep. British Journal of Nutrition 72, 467477.CrossRefGoogle ScholarPubMed
Waterhouse, A, Ignelzi, S & Shirley, J (2000) A comparison of methods for quantifying oligomeric proanthocyanidins from grape seed extracts. American Journal of Enology and Viticulture 51, 383389.CrossRefGoogle Scholar
Xu, R, Yokoyama, WH, Irving, D, Rein, D, Walzem, R & German, JB (1998) Effect of dietary catechin and vitamin E on aortic fatty streak development in hypercholesterolemic hamsters. Atherosclerosis 137, 2936.CrossRefGoogle ScholarPubMed
Yamakoshi, J, Kataoka, S, Koga, T & Ariga, T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142, 139149.CrossRefGoogle ScholarPubMed
Yamakoshi, J, Tokutake, S, Kikuchi, M, Kubota, Y, Konishi, H & Mitsuoka, T (2001) Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor. Microbial Ecology in Health and Disease 13, 2531.CrossRefGoogle Scholar