Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T11:34:10.042Z Has data issue: false hasContentIssue false

Responses to postruminal infusions of graded levels of casein in lactating goats

Published online by Cambridge University Press:  06 August 2007

S. S. E. Ranawana
Affiliation:
Dairy Husbandry Research Unit, Department of Animal Husbandry, University of Sydney, Camden, New South Wales 2570, Australia
R. C. Kellaway
Affiliation:
Dairy Husbandry Research Unit, Department of Animal Husbandry, University of Sydney, Camden, New South Wales 2570, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study was made in goats of the response in terms of milk production, nitrogen utilization, plasma amino acids and amino acid uptake by the mammary gland, to postruminal infusion of casein. Goats in early lactation, housed in metabolism cages, were fed on 2.5 kg basal ration/d (containing 111 g crude protein (N × 6.25)/kg) and were given, by infusion into the abomasum, 0, 15, 30 or 45 g casein/d.

2. Milk production increased from 2.41 kg/d on the basal ration to 2.52, 2.80 and 2.94 kg/d in response to infusions of 15, 30 and 45 g casein/d respectively. Milk composition was unaffected except for milk fat, which was slightly decreased during infusions of the higher levels of casein.

3. The goats were found to be in positive N balance on the basal ration. Milk N output increased with casein infusion; the increase was equivalent to a maximum of 49% of the infused N.

4. The concentration of glucose in arterial blood plasma was decreased at the highest level of casein infusion, but that of plasma urea N was unaffected by treatments.

5. Casein infusions increased the concentrations of total indispensable amino acids and the ratio, indispensable: dispensable amino acids in arterial plasma. Arterial concentrations and mammary extractions of most indispensable amino acids were increased, but only a few increases were statistically significant (P < 0.05).

6. Comparison of individual indispensable amino acids absorbed from the intestine with output in milk indicated that methionine was probably the first limiting amino acid.

7. The results of the experiment were compared to those of similar experiments with cows that have been reported by other workers. The possible ways in which the infused casein may have caused the responses were discussed. However, no firm conclusions regarding the mechanism involved could be drawn from the results of the present study.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Agricultural Research Council (1965). Nutrient Requirements of Farm Animals. No. 2. Ruminants, p. 156. London: Agricultural Research Council.Google Scholar
Barry, J. M. (1961). In Milk: The Mammary Gland and its Secretion, Vol. 1, p. 389 [Kon, S. K., Cowie, A. T., editors]. New York: Academic Press.Google Scholar
Bigwood, E. J. (1964). In The Role of the Gastrointestinal Tract in Protein Metabolism, p. 155 [Munro, H. N. editor]. Oxford: Blackwell Scientific Publications.Google Scholar
Broderick, G. A., Kowalczyk, T. & Satter, L. D. (1970). J. Dairy Sci. 53, 1714.CrossRefGoogle Scholar
Broderick, G. A., Satter, L. D. & Harper, A. E. (1974). J. Dairy Sci. 57, 1015.CrossRefGoogle Scholar
Broster, W. H. (1972). In Handbuch du Tierernahrüng, Vol. 2, p. 292 [Lenkeit, W., Breirem, K., E., Crasemann, editors]. Hamburg and Berlin: Paul Parey.Google Scholar
Chaney, A. L. & Marbach, E. P. (1962). Clin. Chem. 8, 130.CrossRefGoogle Scholar
Clark, J. H. (1975). J. Dairy Sci. 58, 1179.Google Scholar
Clark, J. H., Spires, H. R. & Derrig, R. G. (1973). J. Anim. Sci. 37, 340.Google Scholar
Clarke, E. M. W., Ellinger, G. & Phillipson, A. T. (1966). Proc. R. Soc. B 166, 63.Google Scholar
Coelho, Da, Silva, J. F., Seeley, R. C., Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 357.CrossRefGoogle Scholar
Cowie, A. T. (1966). In The Pituitary Gland, vol. II, p. 412 [Harris, W. G., Donovan, B. T., editors]. London: Butterworths.Google Scholar
Cowie, A. T., Hartmann, P. E. & Turvey, A. (1969). J. Endocr. 43, 651.CrossRefGoogle Scholar
Czarnocki, J., Sibbald, I. R. & Evans, E. V. (1960). Can. J. Anim. Sci. 41, 167.CrossRefGoogle Scholar
Davis, J. G. (1959). Milk Testing, 2nd ed., p. 99. London: Dairy Industries.Google Scholar
Davis, J. G. & McDonald, F. J. (1953). Richmond's Dairy Chemistry, 5th ed., p. 358. London: Charles Griffin & Co. Ltd.Google Scholar
Derrig, R. G., Clark, J. H. & Davis, C. L. (1974). J. Nutr. 104, 151.CrossRefGoogle Scholar
Driedger, A., Condon, R. J., Nimrick, K. O. & Hatfield, E. E. (1970). J. Anim. Sci. 31, 772.CrossRefGoogle Scholar
Duncan, D. L. (1966). In Recent Advances in Animal Nutrition, p. 51 [Abrams, J. R. editor]. London: J. & A. Churchill.Google Scholar
Faichney, G. J. (1972). J. agric. Sci., Camb. 79, 493.CrossRefGoogle Scholar
Hale, G. D., Jacobson, D. R. & Hemken, R. W. (1972). J. Dairy Sci. 55, 689.Google Scholar
Harper, A. E. (1974). J. Nutr. 104, 965.CrossRefGoogle Scholar
Hart, I. C., Bines, J. A., Balch, C. C. & Cowie, A. T. (1975). Life Sciences 16, 1285.CrossRefGoogle Scholar
Hertelendy, F., Machlin, L. & Kipnis, D. M. (1970). Endocrinology 84, 192.CrossRefGoogle Scholar
Hertelendy, F., Takahashi, K., Machlin, L. J. & Kipnis, D. M. (1970). Gen. comp. Endocr. 14, 72.CrossRefGoogle Scholar
Hogan, J. P., Weston, R. H. & Lindsay, J. R. (1968). Aust. J. biol. Sci. 21, 1263.CrossRefGoogle Scholar
Hugget, A. St G. & Nixon, D. A. (1957). Biochem. J. 66, 12P.Google Scholar
Hume, I. D., Jacobson, D. R. & Mitchell, G. E. Jr (1972). J. Nutr. 102, 495.CrossRefGoogle Scholar
Kellaway, R. C., Ranawana, S. S. E., Buchanan, G. H. & Smart, L. (1974). J. Dairy Res. 41, 305.CrossRefGoogle Scholar
Linzell, J. L. (1960). J. Physiol., Lond. 153, 481.CrossRefGoogle Scholar
Linzell, J. L. (1967). J. Physiol., Lond. 190, 347.CrossRefGoogle Scholar
Linzell, J. L. & Mepham, T. B. (1974). J. Dairy Res. 41, 101.CrossRefGoogle Scholar
Machlin, L. J. (1973). J. Dairy Sci. 56, 575.CrossRefGoogle Scholar
McKenzie, H. A. & Wallace, H. S. (1954). Aust. J. Chem. 7, 55.CrossRefGoogle Scholar
Mepham, T. B. & Linzell, J. L. (1974). J. Dairy Sci, 41, 95.Google Scholar
Moe, D. W., Tyrell, H. F. & Flatt, W. P. (1971). J. Dairy Sci. 54, 548.CrossRefGoogle Scholar
Paquay, R., de Baere, R. & Lousse, A. (1972). Br. J. Nutr. 27, 27.CrossRefGoogle Scholar
Perry, J. L. & Hansen, S. (1969). Clinica chim. Acta 25, 53.CrossRefGoogle Scholar
Rowland, S. J. (1938). J. Dairy Res. 9, 42.CrossRefGoogle Scholar
Satter, L. D. & Roffler, R. E. (1975). J. Dairy Sci. 58, 1219.CrossRefGoogle Scholar
Schingoethe, D. J., Hagemann, E. C. & Larson, B. L. (1967). Biochim. biophys. Acta 148, 469.CrossRefGoogle Scholar
Spires, H. R., Clark, J. H. & Derrig, R. G. (1973). J. Dairy Sci. 56, 664.Google Scholar
Spitz, H. D. (1973). Analyt. Biochem. 56, 66.CrossRefGoogle Scholar
Tyrell, H. F., Bolt, D. V., Moe, P. W. & Swan, H. (1972). J. Anim. Sci. 35, 277.Google Scholar
Vik-Mo, L., Emery, R. S. & Huber, J. T. (1974 a). J. Dairy Sci. 57, 869.CrossRefGoogle Scholar
Vik-Mo, L., Huber, J. T., Bergen, W. G. & Lichtenwalner, R. E. (1974 b). J. Dairy Sci. 57, 1024.CrossRefGoogle Scholar