Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T21:34:22.011Z Has data issue: false hasContentIssue false

Urea turnover and transfer to the digestive tract in the rabbit

Published online by Cambridge University Press:  07 March 2008

S. J. Forsythe
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon TyneNE1 7RU
D. S. Parker
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon TyneNE1 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. 14C and 15N isotopes of urea were infused intravenously into rabbits for 6–8 h in order to measure urea synthesis and the extent of degradation in the digestive tract. The results indicate that 0.62 of the urea flux was excreted in the urine and that re-incorporation of urea-N following hydrolysis in the gut represented 0.3 of the urea synthesis rate.

2. Sampling of metabolites from the caecum by dialysis provided an opportunity to assess the contribution of urea-N to the caecal ammonia pool. This contribution is calculated to be 0.25 of caecal ammonia turnover.

3. Infusion of a urease (EC 3. 5. 1. 5) inhibitor during a continuous infusion of [14C]urea into the caecum permitted the measurement of urea turnover within the caecum.

4. Results obtained for urea entry into the caecum are contrasted with the measured urea degradation rate in the gut.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Candau, M., Fioramonti, J. & Touitou, M. (1980). In Proceedings of the Second World Rabbit Congress, pp.8189. Barcelona, Spain:Association Espanola de Cunicultura.Google Scholar
Cheng, K.-J. & Wallace, R. J. (1979). British Journal of Nutrition 42, 553557.CrossRefGoogle Scholar
Cocimano, M. R. & Leng, R. A. (1967). British Journal of Nutrition 21, 353371.CrossRefGoogle Scholar
Fishbein, W. N., Winter, R. S. & Davidson, J. D. (1965). Journal of Biological Chemistry 240, 24022406.CrossRefGoogle Scholar
Forsythe, S. J. (1983). Ammonia metabolism in the caecum of the rabbit. PhD Thesis, University of Newcastle upon Tyne.Google Scholar
Forsythe, S. J., Parker, D. S., Montgomery, I. & Salter, D. N. (1982). In Proceedings of the IV International Symposium on Protein Metabolism and Nutrition, pp. 347350. EAAP Publication no. 31.Google Scholar
Gibson, J. A., Park, N. J., Sladen, G. E. & Dawson, A. M. (1976). Clinical Science and Molecular Medicine 50, 5159.Google Scholar
Goulden, J. D. S. & Salter, D. N. (1979). Analyst (London) 104, 756765.CrossRefGoogle Scholar
Hume, I. D., Rubsamen, K. & Englehart, W. (1980). Journal of Comparative Physiology 138, 307314.CrossRefGoogle Scholar
Jones, C. S., Parker, D. S. (1978). Biochemical Journal 174, 291296.CrossRefGoogle Scholar
Kennedy, P. M. (1980). British Journal of Nutrition 43, 125140.CrossRefGoogle Scholar
Knutson, R. S., Francis, R. S., Hall, J. K., Moore, B. H. & Heisinger, J. F. (1977). Comparative Biochemistry and Physiology 58A, 151154.CrossRefGoogle Scholar
Loehry, C. A., Kingham, J. & Baker, J. (1973). Gut 14, 683688.CrossRefGoogle Scholar
Long, C. L., Keevanandam, M. & Kinney, J. M. (1978). American Journal of Clinical Nutrition 31, 13671382.CrossRefGoogle Scholar
Marty, J., Lavarde, M. A. & Raynaud, P. (1976). Annales de Biologie Animale, Biochimie et Biophysique 16, 8595.CrossRefGoogle Scholar
Moore, R. B. & Kaufmann, N. J. (1970). Analytical Biochemistry 33, 263272.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1972). British Journal of Nutrition 27, 177194.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1974). Proceedings of the Nutrition Society 33, 18.CrossRefGoogle Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). British Journal of Nutrition 35, 127147.CrossRefGoogle Scholar
Nolan, J. V. & Stachiw, S. (1979). British Journal of Nutrition 42, 6380.CrossRefGoogle Scholar
Norton, B. W., Mackintosh, J. B. & Armstrong, D. A. (1982). British Journal of Nutrition 48, 249264.CrossRefGoogle Scholar
Parker, D. S. & McMillan, R. T. (1976). British Journal of Nutrition 35, 365371.CrossRefGoogle Scholar
Prior, R. K., Hintz, H. F., Lowe, J. E. & Visek, W. J. (1974). Journal of Animal Science 38, 565571.CrossRefGoogle Scholar
Regoeczi, E., Irons Koj, A. & McFarlane, A. S. (1965). Biochemical Journal 95, 521532.CrossRefGoogle Scholar
Somogyi, M. (1945). Journal of Biological Chemistry 16, 6973.CrossRefGoogle Scholar
Thacker, P. A., Bowland, J. P., Milligan, L. P. & Weltzein, F. (1982). Canadian Journal of Animal Science 62, 11931197.CrossRefGoogle Scholar
Walser, M. & Bodenlos, L. J. (1959). Journal of Clinical Investigation 38, 16171626.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Analytical Chemistry 39, 971974.CrossRefGoogle Scholar
Wrong, O. M., Edmonds, C. J. & Chadwick, V. S. (1981). The Large Intestine: Its Role in Mammalian Nutrition and Homeostasis. Lancaster: MTP Press.Google Scholar
Wrong, O. M. & Vince, A. (1984). Proceedings of the Nutrition Society 43, 7786.CrossRefGoogle Scholar