Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T01:02:22.604Z Has data issue: false hasContentIssue false

Comparative life history studies of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) on cucumber

Published online by Cambridge University Press:  10 July 2009

Paul C.J. van Rijn*
Affiliation:
Department of Pure and Applied Ecology, University of Amsterdam, The Netherlands
Chris Mollema
Affiliation:
DLO-Centre for Plant Breeding and Reproduction Research (CPRO-DLO), Wageningen, The Netherlands
Greet M. Steenhuis-Broers
Affiliation:
DLO-Centre for Plant Breeding and Reproduction Research (CPRO-DLO), Wageningen, The Netherlands
*
P.C.J. van Rijn, University of Amsterdam, Department of Pure and Applied Ecology. Kruislaan 320, 1098 SM Amsterdam, The Netherlands.

Abstract

Shortly after its invasion into Europe, the western flower thrips, Frankliniella occidentalis (Pergande), became a more severe pest of greenhouse crops than the onion thrips, Thrips tabaci Lindeman. To test whether this differential pest status was due to a larger capacity of population increase, a comparative life history study was carried out on cucumber (Cucumis sativus cv. Corona). Experiments at 25°C showed that the egg-to-egg period of F. occidentalis was shorter, but its peak ovipositional rate was lower and its offspring sex ratio more male biased. These differences resulted in a slightly lower intrinsic rate of population increase (rm) for F. occidentalis than for T. tabaci (0.166 vs. 0.176/day). It was shown experimentally that between 15 and 28°C, developmental rate of F. occidentalis is linearly related to temperature, with a theoretical threshold temperature similar to the value reported for T. tabaci (10.9 vs. 11.5°C). It is argued that the rm-value of F. occidentalis will not be higher than that of T. tabaci for any temperature within this range. Alternative explanations for the difference in pest status between the two thrips species are discussed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H.G. (1935) Thrips investigation. 7. On the effect of temperature and food on egg production and length of adult life of Thrips imaginis Bagnall. Journal of the Council for Scientific and Industrial Research in Australia 8, 281288.Google Scholar
Andrewartha, H.V. (1936) Thrips investigation. 8. The influence of temperature on the rate of development of the immature stages of Thrips imaginis Bagnall and Haplothrips victoriensis Bagnall. Journal of the Council for Scientific and Industrial Research in Australia 9, 5764.Google Scholar
Bakker, F.M. & Sabelis, M.W. (1989) How larvae of Thrips tabaci reduce the attack success of phytoseiid predators. Entomologia Experimentalis et Applicata 50, 4751.CrossRefGoogle Scholar
Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.CrossRefGoogle Scholar
Broadbent, A.B., Allen, W.R. & Foottit, R.G. (1987) The association of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae) with greenhouse crops and the tomato spotted wilt virus in Ontario. Canadian Entomologist 119, 501503.CrossRefGoogle Scholar
Brødsgaard, H.F. (1991) Insecticide resistance in the western flower thrips (Frankliniella occidentalis). pp. 5162in, Bionomics of thrips Frankliniella occidentalis (Thysanoptera: Thripidae) in relation to their control in Danish glasshouse crops. PhD dissertation, University of Copenhagen.Google Scholar
Brødsgaard, H.F. (1994) Effect of photoperiod on the bionomics of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). Journal of Applied Entomology 117, 498507.CrossRefGoogle Scholar
Bryan, D.E. & Smith, R.F. (1956) The Frankliniella occidentalis (Pergande) complex in California (Thysanoptera, Thripidae). University of California Publications in Entomology 10, 359410.Google Scholar
Caswell, H. (1989) Matrix population models. 328 pp. Sunderland, Massachusetts, Sinauer Associates Inc.Google Scholar
Caswell, H. & Hastings, A. (1980) Fecundity, developmental time and population growth rate, an analytical solution. Theoretical Population Biology 17, 7179.CrossRefGoogle ScholarPubMed
Cole, L.C. (1954) The population consequences of life history phenomena. Quarterly Review of Biology 29, 103137.CrossRefGoogle ScholarPubMed
Danks, H.V. (1987) Insect dormancy, an ecological perspective. 440 pp. Ottawa, Biological Survey of Canada (Terrestrial Arthropods), National Museum of Natural Sciences.Google Scholar
de Jager, C.M., Butot, R.P.T., de Jong, T.J., Klinkhamer, P.G.L. & van der Meijden, E. (1993) Population growth and survival of western flower thrips Frankliniella occidentalis Pergande (Thysanoptera, Thripidae) on different chrysanthemum cultivars, two methods for measuring resistance. Journal of Applied Entomology 115, 519525.CrossRefGoogle Scholar
de Klerk, M.-L. & Ramakers, P.M.J. (1986) Monitoring population densities of the phytoseiid predator Amblyseius cucumeris and its prey after large scale introductions to control Thrips tabaci on sweet pepper. Mededelingen Faculteit Landbouwweten - schappen, Rijksuniversiteit Gent 51/3a, 10451048.Google Scholar
de Kroon, H., Plaisier, A., van Groenendael, J. & Caswell, H. (1986) Elasticity, the relative contribution of demographic parameters to population growth rate. Ecology 67, 14271431.CrossRefGoogle Scholar
Edelson, J.V. & Magaro, J.J. (1988) Development of onion thrips, Thrips tabaci Lindeman, as a function of temperature. Southwestern Entomologist 13, 171176.Google Scholar
EPPO (European and Mediterranean Plant Protection Organisation) (1988) Frankliniella occidentalis, biology and control. EPPO Publications Series B no. 91.Google Scholar
Gawaad, A.A.A. & El-Shazli, A.Y. (1969) A new method for rearing Thrips tabaci Lind. and bionomics of its egg and adult stages. Bulletin de la Société Entomologique d'Egypte 53, 443447.Google Scholar
German, T.L., Ulmann, D.E. & Moyer, J.W. (1992) Tospoviruses: diagnosis, molecular biology, phenology, and vector relationships. Annual Review of Phytopathology 30, 315348.CrossRefGoogle Scholar
Ghabn, A.A.A.E. (1948) Contribution to the knowledge of the biology of Thrips tabaci Lind in Egypt. (Thysanoptera). Bulletin de la Société Fouad ler d'Entomologie 32, 123174.Google Scholar
Green, R. & Painter, P.R. (1975) Selection for fertility and development time. American Naturalist 109, 110.CrossRefGoogle Scholar
Harris, H.M., Drake, C.J. & Tate, H.D. (1936) Observations on the onion thrips. lowa State Journal of Science 10, 155172.Google Scholar
Helyer, N.L. (1993) Verticillium lecanii for control of aphids and thrips on cucumber. IOBC/WPRS Bulletin 16/2, 6366.Google Scholar
Helyer, N.L. & Brobyn, P.J. (1992) Chemical control of western flower thrips (Frankliniella occidentalis Pergande). Annals of Applied Biology 121, 219231.CrossRefGoogle Scholar
Herr, E.A. (1934) The gladiolus thrips, Taeniothrips gladioli M. & S. Bulletin Ohio Agricultural Experimental Station no. 537, 64 pp.Google Scholar
Higgins, C.J. & Myers, J.H. (1992) Sex ratio patterns and population dynamics of western flower thrips (Thysanoptera, Thripidae). Environmental Entomology 21, 322330.CrossRefGoogle Scholar
Hunter, W.B. & Ullman, D.E. (1989) Analysis of mouthpart movements during feeding of Frankliniella occidentalis (Pergande) and F. schultzei Trybom (Thysanoptera, Thripidae). International Journal of Insect Morphology & Embryology 18(2/3), 161171.CrossRefGoogle Scholar
Immaraju, J.A., Paine, T.D., Bethke, J.A., Robb, K.L. & Newman, J.P. (1992) Western flower thrips (Thysanoptera, Thripidae) resistance to insecticides in coastal California greenhouses. Journal of Economic Entomology 85, 914.CrossRefGoogle Scholar
Janssen, A. & Sabelis, M.W. (1992) Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranichid mites. Experimental and Applied Acarology 14, 233250.CrossRefGoogle Scholar
Kawai, A. (1985) Studies on population ecology of Thrips palmi Karny. 7. Effect of temperature on population growth. Japanese Journal of Applied Entomology and Zoology 29, 140143.CrossRefGoogle Scholar
Kawai, A. (1986) Studies on population ecology of Thrips palmi Karny. 10. Differences in population on various crops. Japanese Journal of Applied Entomology and Zoology 30, 711.CrossRefGoogle Scholar
Kendall, D.M. & Capinera, J.L. (1990) Geographic and temporal variation in the sex ratio of onion thrips. Southwestern Entomologist 15, 8088.Google Scholar
Kirk, W.D.J. (1984) Pollen feeding in thrips (Insecta, Thysanoptera). Journal of Zoology, London 204, 107117.CrossRefGoogle Scholar
Kirk, W.D.J. (1985) Pollen feeding and host specificity and fecundity of flower thrips (Thysanoptera). Ecological Entomology 10, 281289.CrossRefGoogle Scholar
Lall, B.S. & Singh, L.N. (1968) Biology and control of the onion thrips in India Journal of Economic Entomology 61, 676679.CrossRefGoogle Scholar
Lewis, T. (1973) Thrips: their biology, ecology and practical importance. 297 pp. London, Academic Press.Google Scholar
Lewontin, R.C. (1965) Selection for colonising ability, pp. 7791in Baker, H.G. & Stebbins, G.L. (Eds) The genetics of colonizing species. New York, Academic Press.Google Scholar
Logan, J.A., Wollkind, D.J., Hoyt, S.C. & Tanigoshi, L.K. (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5, 11331140.CrossRefGoogle Scholar
Loomans, A.J.M., Paris, A. & van Lenteren, J.C. (1993) Influence of size of Frankliniella occidentalis (Thysanoptera, Thripidae) on host acceptance by Ceranisus menes (Hymenoptera, Eulophidae). IOBC/WPRS Bulletin 16/2, 101104.Google Scholar
Lotka, A.J. (1925) Elements of physical biology. 460 pp. Baltimore, Williams & Wilkins.Google Scholar
Lowry, V.K.J.W., Smith, J.R. & Mitchell, F.L. (1992) Life-fertility tables for F. fusca (Hinds) and F. occidentalis (Pergande) (Thysanoptera: Thripidae) on peanut. Annals of the Entomological Society of America 85, 744754.CrossRefGoogle Scholar
Lublinkhof, J. & Foster, D.E. (1977) Development and reproductive capacity of Frankliniella occidentalis (Thysanoptera, Thripidae) reared at three temperatures. Journal of the Kansas Entomological Society 50, 313316.Google Scholar
May, R. (1975) Estimating r, a pedagogical note. American Naturalist 109, 496499.Google Scholar
Meats, A. (1971) The relative importance to population increase of fluctuations in mortality, fecundity and the time variables of the reproductive schedule. Oecologia 6, 223237.CrossRefGoogle ScholarPubMed
Mollema, C., Steenhuis, M.M., lnggamer, H. & Soria, C. (1993) Evaluating the resistance to Frankliniella occidentalis in cucumber: methods, genotype variation and effects upon thrips biology. IOBC/WPRS Bulletin 16/5, 7782.Google Scholar
Mood, A.M., Graybill, F.A. & Boes, D.C. (1974) Introduction to the theory of statistics. Auckland, McGray-Hill.Google Scholar
Morison, G.D. (1957) A review of British glasshouse Thysanoptera. Transactions of the Royal Entomological Society of London 109, 467520.CrossRefGoogle Scholar
Murai, T. (1990) Rearing method and biology of thrips parasitoid, Ceranisus menes. IOBC/WPRS Bulletin 13/5, 142146.Google Scholar
Murdoch, W.W., Nisbet, R.M., Blythe, S.P., Gurney, W.S.C. & Reeve, J.D. (1987) An invulnerable age class and stability in delay-differential parasitoid-host models. American Naturalist 129, 263282.CrossRefGoogle Scholar
O'Neill, K. (1960) Identification of the newly introduced phlaeothripid Haplothrips clarisetis Priesner (Thysanoptera). Annals of the Entomological Society of America 53, 507510.CrossRefGoogle Scholar
Pinder, J.E., Wiener, J.G. & Smith, M.H. (1978) The Weibull distribution: a new method of summarizing survivorship date. Ecology 59, 175179.CrossRefGoogle Scholar
Ramakers, P.M.J., Disseveld, M. & Peeters, K. (1989) Large scale introductions of phytoseiid predators to control thrips on cucumber. Mededelingen Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 54, 923929.Google Scholar
Rivnay, E. (1935) Ecological studies of the greenhouse thrips, Heliothrips haemorrhoidalis, in Palestine. Bulletin of Entomological Research 26, 267278.CrossRefGoogle Scholar
Robb, K.L. (1989) Analysis of Frankliniella occidentalis (Pergande) as a pest of floricultural crops in California greenhouses. PhD dissertation, California, University of Riverside.Google Scholar
Romanow, L.R., de Ponti, O.M.B. & Mollema, C. (1991) Resistance in tomato to the greenhouse whitefly, analysis of population dynamics. Entomologia Experimentalis et Applicata 60, 247259.CrossRefGoogle Scholar
Rosenheim, J.A., Welter, S.C., Johnson, M.W., Mau, R.F.L. & Gusukuma-Minuto, L.R. (1990) Direct feeding damage on cucumber by mixed-species infestations of Thrips palmi and Frankliniella occidentalis (Thysanoptera, Thripidae). Journal of Economic Entomology 83, 15191525.CrossRefGoogle Scholar
Royer, T.A., Edelson, J.V. & Cartwright, B. (1986) Damage and control of Thrips tabaci Lindeman on spring onions. Journal Rio Grande Valley Horticultural Society 39, 6974.Google Scholar
Sakimura, K. (1932) Life history of Thrips tabaci L. on Emilia sagitata and its host plant range in Hawaii. Journal of Economic Entomology 25, 884891.CrossRefGoogle Scholar
Samson, R.A., Ramakers, P.M.J. & Oswald, T. (1979) Entomophthora thripidum, a new fungal pathogen of Trips tabaci. Canadian Journal of Botany 57, 13171323.CrossRefGoogle Scholar
Sharpe, P.J.H. & DeMichele, D.W. (1977) Reaction kinetics of poikilotherm development. Journal of Theoretical Biology 64,649670.CrossRefGoogle ScholarPubMed
Shipp, J.L. & Gillespie, T.J. (1993) Influence of temperature and water vapor pressure deficit on survival of Frankliniella occidentalis (Thysanoptera, Thripidae). Environmental Entomology 22, 726732.CrossRefGoogle Scholar
Sibly, R. & Calow, P. (1986) Why breeding earlier is always worthwhile. Journal of Theoretical Biology 123, 311319.CrossRefGoogle Scholar
Snell, T.W. (1978) Fecundity, developmental time and population growth rate. Oecologia 32, 119125.CrossRefGoogle ScholarPubMed
Soria, C. & Mollema, C. (1995) Life-history parameters of western flower thrips on susceptible and resistant cucumber genotypes. Entomologia Experimentalis et Applicata 74, 177184.CrossRefGoogle Scholar
Tanigoshi, L.K., Nishio, J.Y., Moreno, D.S. & Fargerlund, J. (1980) Effect of temperature on development and survival of Scirtothrips citri on citrus foliage. Annals of the Entomological Society of America 73, 378381.CrossRefGoogle Scholar
Terry, L.I. & Gardner, D. (1990) Male mating swarms in Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). Journal of Insect Behaviour 3, 133141.CrossRefGoogle Scholar
Terry, L.I. & Kelly, C.K. (1993) Patterns of change in secondary and tertiary sex ratios of the Terebrantian thrips, Frankliniella occidentalis. Entomologia Experimentalis et Applicata 66, 213225.CrossRefGoogle Scholar
Teulon, D.A.J. & Penman, D.R. (1991) Effects of temperature and diet on oviposition rate and development time of the New Zealand flower thrips, Thrips obscuratus. Entomologia Experimentalis et Applicata 60, 143155.CrossRefGoogle Scholar
Theunissen, J. & Legutowska, H. (1991) Thrips tabaci Lindeman (Thysanoptera, Thripidae) in leek: symptoms, distribution and population estimates. Journal of Applied Entomology 112, 163170.CrossRefGoogle Scholar
Trichilo, P.J. & Leigh, T.F. (1985) The use of life tables to assess varietal resistance of cotton to spider mites. Entomologia Experimentalis et Applicata 39, 2733.CrossRefGoogle Scholar
Trichilo, P.J. & Leigh, T.F. (1986) Predation on spider mite eggs by the western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae). an opportunist in a cotton agroecosystem. Environmental Entomology 15, 821825.CrossRefGoogle Scholar
Trichilo, P.J. & Leigh, T.F. (1988) Influence of resource quality on the reproductive fitness of flower thrips (Thysanoptera, Thripidae). Annals of the Entomological Society of America 81, 6470.CrossRefGoogle Scholar
van den Meiracker, R.A.F. & Ramakers, P.M.J. (1991) Biological control of the western flower thrips Frankliniella occidentalis, in sweet pepper, with the anthocorid predator Orius insidiosus. Mededelingen Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 56/2a, 241249.Google Scholar
van der Hoeven, W.A.D. & van Rijn, P.C.J. (1990) Factors affecting the attack success of predatory mites on thrips larvae. Proceedings Section Experimental & Applied Entomology, N.E.V. Amsterdam 1, 2530.Google Scholar
van Geel, W.C.A. (Ed.) (1991) Gewasbeschermingsgids. 606 pp. Wageningen, Informatie en Kennis Centrum Akker-en Tuinbouw/Plantenziektenkundige Dienst.Google Scholar
van Houten, Y.M. & van Stratum, P. (1993) Biological control of western flower thrips in greenhouse sweet peppers using non-diapausing predatory mites. IOBC/WPRS Bulletin 16/2, 7780.Google Scholar
Vierbergen, B. (1990) De tabakstrips (Thrips tabaci Lind.) en het tomatebronsvlekkenvirus In Nederland. Gewasbescherming 21, 159164.Google Scholar
Wagner, T.L., Wu Hsin-I, , Sharpe, P.J.H., Schoolfield, R.M. & Coulson, R.N. (1984) Modelling insect development rates, a literature review and application of a biophysical model. Annals of the Entomological Society of America 77, 208225CrossRefGoogle Scholar
Watts, J.G. (1934) A comparison of the life cycles of Frankliniella tritici (Fitch), F. fusca (Hinds) and Thrips tabaci Lind. (Thysanoptera-Thripidae) in South Carolina. Journal of Economic Entomology 27, 11581159.CrossRefGoogle Scholar
Wilson, L.T., Trichilo, P.J. & Gonzalez, D. (1991) Natural enemies of spider mites (Acari, Tetranychidae) on cotton, density regulation or casual association? Environmental Entomology 20, 849856.CrossRefGoogle Scholar
Yudin, L.S., Cho, J.J. & Mitchell, W.C. (1986) Host range of western flower thrips, Frankliniella occidentalis (Thysanoptera. Thripidae), with special reference to Leucaena glauca. Environmental Entomology 15, 12921295.CrossRefGoogle Scholar
Zur Strassen, R. (1986) Frankliniella occidenialis (Pergande 1895), ein nordamerikanischer Fransenflügler (Thysanoptera) als neuer Bewohner europäischer Gewächshäuser. Nachrichtenblatt des Deutschen Pfltmzenschutzdienstes 38, 8688.Google Scholar