Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T06:10:24.432Z Has data issue: false hasContentIssue false

Olive cultivar and maturation process on the oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae)

Published online by Cambridge University Press:  21 February 2018

R. Malheiro
Affiliation:
Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal REQUIMTE/LAQV/Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
S. Casal
Affiliation:
REQUIMTE/LAQV/Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
L. Pinheiro
Affiliation:
Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
P. Baptista
Affiliation:
Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
J.A. Pereira*
Affiliation:
Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
*
*Author for correspondence Phone: +351 273303277 Fax: 351 273325405 E-mail: jpereira@ipb.pt

Abstract

The olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is a key-pest in the main olives producing areas worldwide, and displays distinct preference to different olive cultivars. The present work intended to study oviposition preference towards three Portuguese cultivars (Cobrançosa, Madural, and Verdeal Transmontana) at different maturation indexes. Multiple oviposition bioassays (multiple-choice and no-choice) were conducted to assess cultivar preference. No-choice bioassays were conducted to assess the influence of different maturation indexes (MI 2; MI 3, and MI 4) in single cultivars. The longevity of olive fly adults according to the cultivar in which its larvae developed was also evaluated through survival assays.

Cultivar and maturation are crucial aspects in olive fly preference. Field and laboratory assays revealed a preference towards cv. Verdeal Transmontana olives and a lower susceptibility to cv. Cobrançosa olives. A higher preference was observed for olives at MI 2 and MI 3. The slower maturation process in cv. Verdeal Transmontana (still green while the other cultivars are reddish or at black stage) seems to have an attractive effect on olive fly females, thus increasing its infestation levels. Olive fly adults from both sexes live longer if emerged from pupae developed from cv. Verdeal Transmontana fruits and live less if emerged from cv. Cobrançosa. Therefore, olive cultivar and maturation process are crucial aspects in olive fly preference, also influencing the longevity of adults.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aluja, M. & Mangan, R.L. (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Annual Review of Entomology 53, 473502.Google Scholar
Appel, H.M. (1993) Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology 19, 15211552.Google Scholar
Burrack, H.J. & Zalom, F.G. (2008) Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercial important olive varieties in California. Ecology and Behavior 101, 750758.Google Scholar
Corrado, G., Alagna, F., Rocco, M., Renzone, G., Varricchio, P., Coppola, V., Coppola, M., Garonna, A., Baldoni, L., Scaloni, A. & Rao, R. (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biology 12, 117.Google Scholar
Gonçalves, M.F., Malheiro, R., Casal, S., Torres, L. & Pereira, J.A. (2012) Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrançosa, Madural and Verdeal Transmontana). Scientia Horticulturae 145, 127135.Google Scholar
Hermoso, M., Uceda, M., Frias, L. & Beltrán, G. (2001). Maduración. pp. 153170 in Barranco, D., Fernández-Escobar, R. & Rallo, L. (Eds) El cultivo del olivo. Madrid, Spain, Ediciones Mundi-Prensa.Google Scholar
Iannota, N., Belfiore, T., Noce, M.E., Scalercio, S. & Vizzarri, V. (2012) Correlation between Bactrocera oleae infestation and Camarosporium dalmaticum infection in an olive area of Southern Italy. Acta Horticulturae 949, 309316.Google Scholar
Iannotta, N. & Scalercio, S. (2012) Susceptibility of cultivars to biotic stresses. pp. 81106 in Muzzalupo, I. (Ed.) Olive Germplasm – The Olive Cultivation, Table Olive and Olive Oil Industry in Italy. Rijeka, Croatia, InTech.Google Scholar
Imperato, A., Corrado, G., Alagna, F., Varricchio, P., Baldoni, L. & Rao, R. (2012) Olive molecular response to attack of Bactrocera oleae: identification of up-regulated genes in infested olive fruits. Acta Horticulturae 929, 125128.Google Scholar
Jacome, I., Aluja, M., Liedo, P. & Nestel, D. (1995) The influence of adult diet and age on lipid reserves in the tropical fruit fly Anastrepha serpentina (Dipetra: Tephritidae). Journal of Insect Physiology 41, 10791086.Google Scholar
Jaleel, W., Yin, J., Wang, D., He, Y., Lu, L. & Shi, H. (2017) Using two-sex life tables to determine fitness parameters of four Bactrocera species (Diptera: Tephritidae) reared on a semi-artificial diet. Bulletin of Entomological Research, DOI: 10.1017/S000748531700092X.Google Scholar
Jones, S.R. & Kim, K.C. (1994) Aculeus wear and oviposition in four species of Tephritidae (Diptera). Annals of the Entomological Society of America 87, 104107.Google Scholar
Katsoyannos, B.I. & Kouloussis, N.A. (2001) Captures of the olive fruit fly Bactrocera oleae on spheres of different colours. Entomologia Experimentalis et Applicata 100, 165172.Google Scholar
Kombargi, W.S., Michelakis, S.E. & Petrakis, C.A. (1998) Effect of olive surface waxes on oviposition by Bactrocera oleae (Diptera: Tephritidae). Journal of Economic Entomology 91, 993998.Google Scholar
Koudounas, K., Banilas, G., Michaelidis, C., Demoliou, C., Rigas, S. & Hatzopoulos, P. (2015) A defense-related Olea europaea β-glucosidase hydrolyses and activates oleuropein into a potent protein cross-linking agent. Journal of Experimental Botany 66, 20932106.Google Scholar
Light, D.M. & Jang, E.B. (1996) Plant volatiles evoke and modulate tephritid behavior. pp. 123133 in McPheron, B.A. & Steck, G.J. (Eds) Fruit Fly Pests: A World Assessment of Their Biology and Management. Delray Beach, St. Lucie Press.Google Scholar
Malheiro, R., Casal, S., Baptista, P. & Pereira, J.A. (2015 a) A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trends in Food Science and Technology 44, 226242.Google Scholar
Malheiro, R., Casal, S., Baptista, P. & Pereira, J.A. (2015 b) Physico-chemical characteristics of olive leaves and fruits and their relation with Bactrocera oleae (Rossi) cultivar oviposition preference. Scientia Horticulturae 194, 208214.Google Scholar
Malheiro, R., Casal, S., Cunha, S., Baptista, P. & Pereira, J.A. (2015 c) Olive volatiles from Portugueses cultivars Cobrançosa, Madural and Verdeal Transmontana: role in oviposition preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PLoS ONE 10, e0125070.Google Scholar
Navrozidis, E., Zartaloudis, Z., Thomidis, T., Karagiannidis, N., Roubos, K. & Michailides, Z. (2007) Effect of soil plowing and fertilization on the susceptibility of four olive cultivars to the insect Bactrocera oleae and the fungi Sphaeropsis dalmatica and Spilocaea oleagina. Phytopathology 35, 429432.Google Scholar
Pereira, J.A., Alves, M.R., Casal, S. & Oliveira, M.B.P.P. (2004) Effect of olive fruit fly infestation on the quality of olive oil from cultivars Cobrançosa, Madural, and Verdeal Transmontana. Italian Journal of Food Science 16, 355365.Google Scholar
Prokopy, R.J., Cooley, S.S. & Papaj, D. (1993). How well can relative specialist Rhagoletis flies learn to discriminate fruit for oviposition? Journal of Insect Behavior 6, 167176.Google Scholar
Rizzo, R., Caleca, V. & Lombardo, A. (2012) Relation of fruit color, elongation, hardness, and volume to the infestation of olive cultivars by the olive fruit fly, Bactrocera oleae. Entomologia Experimentalis et Applicata 145, 1522.Google Scholar
Robacker, D.C. & Fraser, I. (2005). What do Mexican fruit flies learn when they experience fruit? Journal of Insect Behavior 18, 529542.Google Scholar
Scarpati, M.L., Lo Scalzo, R. & Vita, G. (1993) Olea europaea volatiles attractive and repellent to the olive fly (dacus oleae, Gmelin). Journal of Chemical Ecology 19, 881891.Google Scholar
Sharma, R. & Sohal, S.K. (2013) Toxicity of gallic acid to melon fruit fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Archives of Phytopathology and Plant Protection 46, 20432050.Google Scholar
Sousa, A., Malheiro, R., Casal, S., Bento, A. & Pereira, J.A. (2014) Antioxidant activity and phenolic composition of Cv. Cobrançosa olives affected through the maturation process. Journal of Functional Foods 11, 2029.Google Scholar
Sousa, A., Malheiro, R., Casal, S., Bento, A. & Pereira, J.A. (2015) Optimal harvesting period for cvs. Madural and Verdeal Transmontana, based on antioxidant potential and phenolic composition of olives. LWT – Food Science and Technology 62, 11201126.Google Scholar
Spadafora, A., Mazzuca, S., Chiappetta, F.F., Parise, A. & Innocenti, A.M. (2008) Oleuropein-specific-β-glucosidase activity marks the early response of olive fruits (Olea europaea) to mimed insect attack. Agricultural Sciences in China 7, 703712.Google Scholar
Städler, E., Schöni, R. & Kozlowski, M.W. (1987) Relative air humidity influences the function of the tarsal chemoreceptor cells of the cherry fruit fly (Rhagoletis cerasi). Physiological Entomology 12, 339346.Google Scholar
Therneau, T. (2014) A Package for Survival Analysis in S. R package version 2.37-7. Available online at http://CRAN.R-project.org/package=survivalGoogle Scholar
Thibout, É., Pierre, D., Mondy, N., Lecomte, J.C., Biémont, J.C. & Auger, J. (2007) Host-plant finding by the asparagus fly, Plioreocepta poeciloptera (Diptera: Tephritidae), a monophagous, monovoltine tephritid. Bulletin of Entomological Research 95, 393399.Google Scholar
Vlahov, G. (1992) Flavonoids in three olive (Olea europaea) fruit varieties during maturation. Journal of the Science of Food and Agriculture 58, 157159.Google Scholar