Article contents
Yeast one-hybrid screening the potential regulator of CYP6B6 overexpression of Helicoverpa armigera under 2-tridecanone stress
Published online by Cambridge University Press: 23 December 2015
Abstract
In insect, the cytochrome P450 plays a pivotal role in detoxification to toxic allelochemicals. Helicoverpa armigera can tolerate and survive in 2-tridecanone treatment owing to the CYP6B6 responsive expression, which is controlled by some regulatory DNA sequences and transcription regulators. Therefore, the 2-tridecanone responsive region and transcription regulators of the CYP6B6 are responsible for detoxification of cotton bollworm. In this study, we used yeast one-hybrid to screen two potential transcription regulators of the CYP6B6 from H. armigera that respond to the plant secondary toxicant 2-tridecanone, which were named Prey1 and Prey2, respectively. According to the NCBI database blast, Prey1 is the homology with FK506 binding protein (FKBP) of Manduca sexta and Bombyx mori that belongs to the FKBP-C superfamily, while Prey2 may be a homology of an unknown protein of Papilio or the fcaL24 protein homology of B. mori. The electrophoretic mobility shift assays revealed that the FKBP of prokaryotic expression could specifically bind to the active region of the CYP6B6 promoter. After the 6th instar larvae of H. armigera reared on 2-tridecanone artificial diet, we found there were similar patterns of CYP6B6 and FKBP expression of the cotton bollworm treated with 10 mg g−1 2-tridecanone for 48 h, which correlation coefficient was the highest (0.923). Thus, the FKBP is identified as a strong candidate for regulation of the CYP6B6 expression, when the cotton bollworm is treated with 2-tridecanone. This may lead us to a better understanding of transcriptional mechanism of CYP6B6 and provide very useful information for the pest control.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
- 6
- Cited by