No CrossRef data available.
Article contents
AN EXACT FORMULA FOR THE HARMONIC CONTINUED FRACTION
Part of:
Elementary number theory
Diophantine approximation, transcendental number theory
Computational number theory
Published online by Cambridge University Press: 10 June 2020
Abstract
For a positive real number $t$, define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$
MSC classification
Primary:
11A55: Continued fractions
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 103 , Issue 1 , February 2021 , pp. 11 - 21
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
References
Beardon, A. F. and Short, I., ‘The Seidel, Stern, Stolz and Van Vleck theorems on continued fractions’, Bull. Lond. Math. Soc. 42 (2010), 457–466.10.1112/blms/bdq006CrossRefGoogle Scholar
Bunder, M., Nickolas, P. and Tonien, J., ‘On the harmonic continued fractions’, Ramanujan J. 49 (2019), 669–697.CrossRefGoogle Scholar
Bunder, M. and Tonien, J., ‘Closed form expressions for two harmonic continued fractions’, Math. Gaz. 101 (2017), 439–448.CrossRefGoogle Scholar
Euler, L., ‘De fractionibus continuis observationes’, Comment. Acad. Sci. Imp. Petropol. 11 (1750), 32–81.Google Scholar
Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, 6th edn (Oxford University Press, Oxford, 2008).Google Scholar
Lorentzen, L. and Waadeland, H., Continued Fractions with Applications, Studies in Computational Mathematics, 3 (North-Holland, Amsterdam, 1992).Google Scholar
Seidel, L., Untersuchungen über die Konvergenz und Divergenz der Kettenbrüche, Habilschrift, München, 1846.Google Scholar
Stern, M. A., ‘Über die Kennzeichen der Konvergenz eines Kettenbruchs’, J. reine angew. Math. 37 (1848), 255–272.Google Scholar