Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T08:53:16.626Z Has data issue: false hasContentIssue false

A NOTE ON THE GOORMAGHTIGH EQUATION CONCERNING DIFFERENCE SETS

Published online by Cambridge University Press:  23 June 2023

YASUTSUGU FUJITA*
Affiliation:
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
MAOHUA LE
Affiliation:
Institute of Mathematics, Lingnan Normal College, Zhanjiang, Guangdong 524048 China e-mail: lemaohua2008@163.com
Rights & Permissions [Opens in a new window]

Abstract

Let p be a prime and let r, s be positive integers. In this paper, we prove that the Goormaghtigh equation $(x^m-1)/(x-1)=(y^n-1)/(y-1)$, $x,y,m,n \in {\mathbb {N}}$, $\min \{x,y\}>1$, $\min \{m,n\}>2$ with $(x,y)=(p^r,p^s+1)$ has only one solution $(x,y,m,n)=(2,5,5,3)$. This result is related to the existence of some partial difference sets in combinatorics.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let ${\mathbb {N}}$ be the set of all positive integers. One hundred years ago, Ratat [Reference Ratat27] and Rose and Goormaghtigh [Reference Rose and Goormaghtigh28] conjectured that the equation

(1.1) $$ \begin{align} \frac{x^m-1}{x-1}=\frac{y^n-1}{y-1} \quad \mbox{for all } x,y,m,n \in {\mathbb{N}}, x \ne y, \min\{x,y\}>1, \min\{m,n\}>2, \end{align} $$

has only two solutions $(x,y,m,n)=(2,5,5,3)$ and $(2,90,13,3)$ with $x<y$ . Equation (1.1) is usually called the Goormaghtigh equation. The above conjecture is a very difficult problem in Diophantine equations. It was solved for some special cases (see [Reference Balasubramanian and Shorey3, Reference Bennett, Garbuz and Marten5, Reference Bennett, Gherga and Kreso6, Reference Bugeaud and Shorey9, Reference Davenport, Lewis and Schinzel10, Reference He12, Reference Karanikolov14Reference Le18, Reference Makowski and Schinzel22, Reference Makowski and Schinzel23, Reference Nesterenko and Shorey26, Reference Saradha29Reference Yuan37]). But, in general, the problem is far from solved. The solution of (1.1) is closely related to some problems in number theory, combinatorics and algebra (see [Reference Abdollahi and Mohammadi Hassanabadi1, Reference Bateman and Stemmler4, Reference He and Togbé13, Reference Leung, Ma and Schmidt19, Reference Luca21]). For example, while discussing the partial geometries admitting Singer groups in combinatorics, Leung et al. [Reference Leung, Ma and Schmidt19] found that the existence of partial difference sets in an elementary abelian $3$ -group is related to the solutions $(x,y,m,n)$ of (1.1) with

(1.2) $$ \begin{align} (x,y)=(2^r,3), \end{align} $$

where r is a positive integer. In [Reference Leung, Ma and Schmidt19], they proved that (1.1) has no solutions $(x,y,m,n)$ satisfying (1.2).

Let p be a prime and let r, s be positive integers. In this paper, we discuss the solutions $(x,y,m,n)$ of (1.1) with

(1.3) $$ \begin{align} (x,y)=(p^r,p^s+1). \end{align} $$

Thus, we generalise the above-mentioned result in [Reference Leung, Ma and Schmidt19] to prove the following theorem.

Theorem 1.1. Equation (1.1) has only one solution $(x,y,m,n)=(2,5,5,3)$ with (1.3).

Combining Theorem 1.1 and [Reference Leung, Ma and Schmidt19, Corollary 37] with $q=\alpha +1=2^s+1$ , we immediately obtain the following corollary which may be regarded as a generalisation of [Reference Leung, Ma and Schmidt19, Corollary 44].

Corollary 1.2. Suppose that a proper partial geometry $\varPi $ has at least two subgroup lines and that the parameters of the corresponding partial difference set have the form in [Reference Leung, Ma and Schmidt19, (34)]. Then, $\varPi $ cannot be expressed as

$$ \begin{align*} \varPi=\mathrm{pg}((2^s+1)^u,(2^r-1)(2^s+1)^u+2^s+1,2^s) \end{align*} $$

with $r,s,t \in {\mathbb {N}}$ .

The organisation of the paper is as follows. In Section 2, we prove Theorem 1.1 in the case where $r \le s$ using an upper bound for the number of solutions of the generalised Ramanujan–Nagell equations due to Bugeaud and Shorey [Reference Bugeaud and Shorey8]. In Section 3, using a lower bound for linear forms in three logarithms due to Matveev [Reference Matveev24], we show that if $r>s$ and $p^r>3.436\times 10^{15}$ , then (1.1) has no solutions $(x,y,m,n)$ with (1.3). Thus, the remaining case to be checked is $r>s$ and $p^r<3.436\times 10^{15}$ . For this, we appeal to the reduction method due to Dujella and Pethő [Reference Dujella and Pethő11], based on [Reference Baker and Davenport2, Lemma] by Baker and Davenport, to complete the proof of Theorem 1.1 in Section 4.

2 The case $r \le s$

Lemma 2.1 [Reference Ljunggren20]

The equation

(2.1) $$ \begin{align} \frac{X^k-1}{X-1}=Y^l \quad \mbox{for all } X,Y,k,l \in {\mathbb{N}}, X>1, Y>1, k>2, l>1, \end{align} $$

has only two solutions, $(X,Y,k,l)=(3,11,5,2)$ and $(7,20,4,2)$ with $2 \mid l$ .

Let $D_1$ and $D_2$ be coprime positive integers and let p be a prime with $p \nmid D_1D_2$ . Further, let $N(D_1,D_2,p)$ denote the number of solutions $(X,Z)$ of the equation

(2.2) $$ \begin{align} D_1X^2+D_2=p^Z\quad \mbox{for all } X,Z \in {\mathbb{N}}. \end{align} $$

Combining the results in [Reference Bugeaud, Mignotte and Siksek7, Reference Bugeaud and Shorey8], we immediately obtain the following two lemmas.

Lemma 2.2. We have $N(D_1,D_2,2) \le 1$ , except for the following cases:

  1. (i) $N(1,7,2)=5$ , $(X,Z)=(1,3),(3,4),(5,5),(11,7)$ and $(181,15)$ ;

  2. (ii) $N(3,5,2)=3$ , $(X,Z)=(1,3),(3,5)$ and $(13,9)$ ;

  3. (iii) $N(7,1,2)=2$ , $(X,Z)=(1,3)$ and $(3,6)$ ;

  4. (iv) $N(1,2^{k+2}-1,2)=2$ , $(X,Z)=(1,k+2)$ and $(2^{k+1}-1,2k+2)$ , where k is a positive integer with $k>1$ ;

  5. (v) $N(3,29,2)=2$ , $(X,Z)=(1,5)$ and $(209,17)$ ;

  6. (vi) $N(5,3,2)=2$ , $(X,Z)=(1,3)$ and $(5,7)$ ;

  7. (vii) $N(13,3,2)=2$ , $(X,Z)=(1,4)$ and $(71,16)$ ;

  8. (viii) $N(21,11,2)=2$ , $(X,Z)=(1,5)$ and $(79,17)$ ; and

  9. (ix) if $D_1a^2{\kern-1pt}={\kern-1pt}2^k{\kern-1pt}-{\kern-1pt}\delta $ and $D_2=3\cdot 2^k{\kern-1pt}+{\kern-1pt}\delta $ , where a, k are positive integers with $k{\kern-1pt}>{\kern-1pt}1$ and $\delta \in \{1,-1\}$ , then $N(D_1,D_2,2)=2$ , $(X,Z)=(a,k+2)$ and $((2^{k+1}+\delta )a, 3k+2)$ .

Lemma 2.3. If $p \ne 2$ , then $N(D_1,D_2,p)\le 1$ , except for the following cases:

  1. (i) $N(2,1,3)=3$ , $(X,Z)=(1,1), (2,2)$ and $(11,5)$ ; and

  2. (ii) if $4D_1a^2=p^k-\delta $ and $4D_2=3p^k+\delta $ , where a, k are positive integers and $\delta \in \{1,-1\}$ , then $N(D_1,D_2,p)=2$ , $(X,Z)=(a,k)$ and $((2p^k+\delta )a,3k)$ .

Proposition 2.4. If $r \le s$ , then (1.1) has only one solution $(x,y,m,n)=(2,5,5,3)$ with (1.3).

Proof. We now assume that $(x,y,m,n)$ is a solution of (1.1) with (1.3). Then

(2.3) $$ \begin{align} \frac{p^{rm}-1}{p^r-1}=\frac{(p^s+1)^n-1}{p^s}. \end{align} $$

When $r=s$ , by (2.3),

(2.4) $$ \begin{align} \frac{p^{r(m+1)}-1}{p^r-1}=(p^r+1)^n. \end{align} $$

If $2 \mid n$ , by (2.4), the equation (2.1) has a solution $(X,Y,k,l)=(p^r,p^r+1,m+1,n)$ with $2 \mid l$ . However, since $m>2$ , by Lemma 2.1, this is impossible. So $2 \nmid n$ and $n \ge 3$ .

Since $p^r+1>2$ and $p^r \equiv -1 \pmod {(p^r+1)}$ , by (2.4),

$$ \begin{align*} 0 \equiv (p^r-1)(p^r+1)^n\equiv p^{r(m+1)}-1\equiv (-1)^{m+1}-1 \pmod{(p^r+1)}, \end{align*} $$

from which we get $2 \mid m+1$ . Hence, by (2.4),

(2.5) $$ \begin{align} \frac{(p^{2r})^{(m+1)/2}-1}{p^{2r}-1}=(p^r+1)^{n-1}. \end{align} $$

Recall that $2 \nmid n$ and $n \ge 3$ . We see from (2.5) that if $(m+1)/2>2$ , then (2.1) has a solution $(X,Y,k,l)=(p^{2r},p^r+1,(m+1)/2,n-1)$ with $2 \mid l$ . But, by Lemma 2.1 again, this is impossible. Therefore, since $2 \nmid m$ and $m \ge 3$ , we get $m=3$ , and by (2.5),

$$ \begin{align*} \frac{(p^{2r})^{(m+1)/2}-1}{p^{2r}-1}=\frac{p^{4r}-1}{p^{2r}-1}=p^{2r}+1=(p^r+1)^{n-1} \ge (p^r+1)^2>p^{2r}+1, \end{align*} $$

which is a contradiction. Thus, (1.1) has no solutions $(x,y,m,n)$ with (1.3) and $r=s$ .

When $r<s$ , by (2.3),

(2.6) $$ \begin{align} (p^r-1)(p^s+1)^n+(p^s-p^r+1)=p^{rm+s}. \end{align} $$

Since $r<s$ , $p^r-1$ , $p^s+1$ and $p^s-p^r+1$ are positive integers satisfying

(2.7) $$ \begin{align} \gcd((p^r-1)(p^s+1),p^s-p^r+1)=1,\quad p \nmid (p^r-1)(p^s+1)(p^s-p^r+1). \end{align} $$

If $2 \mid n$ , by (2.6), the equation (2.2) has a solution

$$ \begin{align*} (X,Z)=((p^s+1)^{n/2},rm+s) \end{align*} $$

for $(D_1,D_2)=(p^r-1,p^s-p^r+1)$ . Notice that (2.2) has another solution $(X,Z)=(1,s)$ for $(D_1,D_2)=(p^r-1,p^s-p^r+1)$ . So

(2.8) $$ \begin{align} N(p^r-1,p^s-p^r+1,p) \ge 2. \end{align} $$

However, by (2.7), using Lemmas 2.2 and 2.3, (2.8) is false.

Similarly, if $2 \nmid n$ , by (2.6), the equation (2.2) has a solution

$$ \begin{align*} (X,Z)=((p^s+1)^{(n-1)/2},rm+s) \end{align*} $$

for $(D_1,D_2)=((p^r-1)(p^s+1),p^s-p^r+1)$ . Moreover, (2.2) has another solution $(X,Z)=(1,r+s)$ for $(D_1,D_2)=((p^r-1)(p^s+1),p^s-p^r+1)$ . So

(2.9) $$ \begin{align} N((p^r-1)(p^s+1),p^s-p^r+1,p) \ge 2. \end{align} $$

Applying Lemmas 2.2 and 2.3 to (2.9), we can only obtain

(2.10) $$ \begin{align} (p,r,x)=(2,1,2). \end{align} $$

Therefore, by (1.3) and (2.10), we get $(D_1,D_2)=(5,3)$ and $(x,y,m,n)=(2,5,5,3)$ . Thus, the proposition is proved.

3 The case $r>s$

In this section, we assume that $r>s$ and $(x,y,m,n)$ is a solution of (1.1) with (1.3).

Lemma 3.1. If $(p,s)\ne (2,1)$ , then $n> p^r$ .

Proof. By (2.3),

$$ \begin{align*} \frac{p^{rm}-1}{p^r-1}=\sum_{i=0}^{m-1}p^{ri}=\sum_{j=1}^n \binom{n}{j}p^{s(j-1)}=\frac{(p^s+1)^n-1}{p^s}, \end{align*} $$

from which we get

(3.1) $$ \begin{align} p^r\bigg(\frac{p^{r(m-1)}-1}{p^r-1}\bigg)=(n-1)+\sum_{j=2}^n\binom{n}{j}p^{s(j-1)}. \end{align} $$

Since $n>2$ and $p \nmid (p^{r(m-1)}-1)/(p^r-1)$ , we see from (3.1) that $p \mid n-1$ and

(3.2) $$ \begin{align} p^r\, \|\, (n-1)+\sum_{j=2}^n\binom{n}{j}p^{s(j-1)}. \end{align} $$

Let

(3.3) $$ \begin{align} p^t\,\|\,n-1 \end{align} $$

and

(3.4) $$ \begin{align} p^{t_j}\,\|\,j \quad \mbox{for all } j=2,\ldots,n, \end{align} $$

where t is a positive integer and $t_j\ (j=2,\ldots ,n)$ are nonnegative integers. Then

(3.5) $$ \begin{align} t_j \le \frac{\log j}{\log p}\le j-1 \quad \mbox{for all } j=2,\ldots,n. \end{align} $$

Notice that both symbols ‘ $\le $ ’ in (3.5) can be taken by equal signs ‘ $=$ ’ if and only if $(p,t_j,j)=(2,1,2)$ . It follows from (3.5) that if $(p,t_j)\ne (2,1)$ , then

(3.6) $$ \begin{align} t_j<j-1 \quad \mbox{for all } j=2,\ldots,n. \end{align} $$

Hence, since $\gcd (j,j-1)=1$ and $(p,s)\ne (2,1)$ , by (3.3), (3.4) and (3.6),

(3.7) $$ \begin{align} \binom{n}{j}p^{s(j-1)}\equiv n(n-1)\binom{n-2}{j-2}\frac{p^{s(j-1)}}{(j-1)j}\equiv 0 \pmod{p^{t+1}} \quad \mbox{for all } j=2,\ldots,n. \end{align} $$

Therefore, by (3.3) and (3.7),

(3.8) $$ \begin{align} p^t\,\|\,(n-1)+\sum_{j=2}^n\binom{n}{j}p^{s(j-1)}. \end{align} $$

Comparing (3.2) and (3.8),

(3.9) $$ \begin{align} t=r. \end{align} $$

Further, since $n>1$ , by (3.3) and (3.9), we obtain $n-1 \ge p^r$ and $n>p^r$ . The lemma is proved.

Let ${\mathbb {Z}}$ , ${\mathbb {Q}}$ and ${\mathbb {R}}$ be the sets of all integers, rational numbers and real numbers, respectively. Let $\alpha $ be an algebraic number of degree d and let $\alpha ^{(1)},\ldots ,\alpha ^{(d)}$ denote all the conjugates of $\alpha $ . Further, let

$$ \begin{align*} f(X)=a\prod_{i=1}^d(X-\alpha^{(i)})\in {\mathbb{Z}}[X] \quad \mbox{for all } a \in {\mathbb{N}} \end{align*} $$

denote the minimal polynomial of $\alpha $ . Then

$$ \begin{align*} \mathop{\mathrm{h}}\nolimits(\alpha)=\frac{1}{d}\bigg(\log a +\sum_{i=1}^d\log \max\{1,|\alpha^{(i)}|\}\bigg) \end{align*} $$

is called the absolute logarithmic height of $\alpha $ .

Lemma 3.2 ([Reference Matveev24, Reference Mignotte and Voutier25])

Let $\alpha _1$ , $\alpha _2$ , $\alpha _3$ be three distinct real algebraic numbers with $\min \{\alpha _1,\alpha _2,\alpha _3\}>1$ and let $b_1$ , $b_2$ , $b_3$ be three positive integers with $\gcd (b_1,b_2,b_3)=1$ . Further, let

$$ \begin{align*} \varLambda=b_1\log \alpha_1+b_2\log \alpha_2-b_3\log \alpha_3. \end{align*} $$

If $\varLambda \ne 0$ , then

$$ \begin{align*} \log|\varLambda|>-CD^2A_1A_2A_3\log(1.5e DB\log(e D)), \end{align*} $$

where

(3.10) $$ \begin{align} D&=[\,{\mathbb{Q}}(\alpha_1,\alpha_2,\alpha_3):{\mathbb{Q}}\,],\quad D'=[\,{\mathbb{R}}(\alpha_1,\alpha_2,\alpha_3):{\mathbb{R}}\,], \kern1pt\qquad\end{align} $$
(3.11) $$ \begin{align} A_j&\ge \max\{D\mathop{\mathrm{h}}\nolimits(\alpha_j),|\log \alpha_j|\} \quad \mbox{for } j=1,2,3, \qquad\qquad\qquad\, \end{align} $$
(3.12) $$ \begin{align} B&\ge \max\bigg\{b_j\frac{A_j}{A_1}\,\bigg|\,j=1,2,3\bigg\}, \qquad\qquad\qquad\qquad\qquad\qquad\kern1pt\end{align} $$
(3.13) $$ \begin{align} C&=\frac{5\times 16^5}{6D'}e^3(7+2D')\bigg(\frac{3e}{2}\bigg)^{D'}(26.25+\log(D^2\log(e D))).\ \ \end{align} $$

Proposition 3.3. If $r>s$ and $p^r>3.436\times 10^{15}$ , then (1.1) has no solutions $(x,y,m,n)$ with (1.3).

Proof. By [Reference Leung, Ma and Schmidt19], the proposition holds for $(p,s)=(2,1)$ . We can therefore assume that $(p,s)\ne (2,1)$ . By (2.3),

(3.14) $$ \begin{align} (p^r-1)(p^s+1)^n=p^{rm+s}+(p^r-p^s-1). \end{align} $$

Since $p^r-p^s-1>0$ , taking the logarithms of both sides of (3.14),

(3.15) $$ \begin{align} \log(p^r-1)+n\log(p^s+1)=(rm+s)\log p+\log \bigg(1+\frac{p^r-p^s-1}{p^{rm+s}}\bigg). \end{align} $$

Since $\log (1+\varepsilon )<\varepsilon $ for any $\varepsilon>0$ , by (3.15),

(3.16) $$ \begin{align} \begin{array}{ll} &0 <\log(p^r-1)+n\log(p^s+1)-(rm+s)\log p\\[6pt] &\quad =\log \bigg(1+\dfrac{p^r-p^s-1}{p^{rm+s}}\bigg)<\dfrac{p^r-p^s-1}{p^{rm+s}}. \end{array} \end{align} $$

Take

(3.17) $$ \begin{align} \alpha_1=p^r-1,\quad \alpha_2=p^s+1,\quad \alpha_3=p,\quad b_1=1,\quad b_2=n,\quad b_3=rm+s \end{align} $$

and

(3.18) $$ \begin{align} \varLambda=\log(p^r-1)+n\log(p^s+1)-(rm+s)\log p. \end{align} $$

By (3.16) and (3.18), we have $\varLambda>0$ and

(3.19) $$ \begin{align} (rm+s)\log p+\log \varLambda<\log(p^r-p^s-1)<\log(p^r-1). \end{align} $$

In order to apply Lemma 3.2, by (3.10), (3.11) and (3.17), we can choose the following parameters.

(3.20) $$ \begin{align} D& =D'=1, \end{align} $$
(3.21) $$ \begin{align} A_1=\log(p^r-1),\quad A_2& =\log(p^s+1),\quad A_3=\log p. \end{align} $$

Further, by (3.12), (3.13), (3.16), (3.20) and (3.21),

$$ \begin{align*} B=\frac{(rm+s)\log p}{\log(p^r-1)} \end{align*} $$

and

(3.22) $$ \begin{align} C<1.691\times 10^{10}. \end{align} $$

Applying Lemma 3.2 to (3.17) and (3.18), by (3.20)–(3.22),

(3.23) $$ \begin{align} \log \varLambda&>-1.691\times 10^{10}(\log(p^r-1))(\log(p^s+1))(\log p)\nonumber\\ &\quad\times \bigg(1.406+\log \bigg(\dfrac{(rm+s)\log p}{\log(p^r-1)}\bigg)\bigg). \end{align} $$

Substituting (3.23) into (3.19), we get

(3.24) $$ \begin{align} 1+1.691\times 10^{10}(\log(p^s+1))(\log p)\bigg(1.406+\log\bigg(\dfrac{(rm+s)\log p}{\log(p^r-1)}\bigg)\bigg)>\dfrac{(rm+s)\log p}{\log(p^r-1)}. \end{align} $$

Hence, since $(p,s)\ne (2,1)$ and $p^s+1 \ge 4$ , by (3.23), we can calculate that

(3.25) $$ \begin{align} \frac{(rm+s)\log p}{\log(p^r-1)}<1.501\times 10^{12}(\log(p^s+1))(\log p)(\log \log(p^s+1)). \end{align} $$

On the other hand, by (3.16),

(3.26) $$ \begin{align} \dfrac{(rm+s)\log p}{\log(p^r-1)}&>\bigg(1-\dfrac{p^r-p^s-1}{p^{rm+s}\log(p^r-1)}\bigg)+\dfrac{n\log(p^s+1)}{\log(p^r-1)}\nonumber\\ &>\dfrac{n\log(p^s+1)}{\log(p^r-1)}. \end{align} $$

Since $\log p \le (\log p^r)/2$ for $r \ge 2$ , the combination of (3.25) and (3.26) yields

(3.27) $$ \begin{align} n&<1.501\times 10^{12}(\log p)(\log(p^r-1))(\log \log(p^s+1))\nonumber\\ &<7.505\times 10^{11}( \log p^r)^2(\log \log p^r). \end{align} $$

Further, since $(p,s)\ne (2,1)$ , by Lemma 3.1, we have $n>p^r$ . Hence, by (3.27),

(3.28) $$ \begin{align} p^r<7.505\times 10^{11}(\log p^r)^2(\log \log p^r). \end{align} $$

Therefore, by (3.28), we obtain $p^r<3.436\times 10^{15}$ . Thus, if $r>s$ and $p^r>3.436\times 10^{15}$ , then (1.1) has no solutions $(x,y,m,n)$ with (1.3). The proposition is proved.

4 Proof of Theorem 1.1

We continue to assume that $r>s$ and that $(x,y,m,n)$ is a solution of (1.1) with (1.3). Put $m'=rm+s$ . By (3.25),

(4.1) $$ \begin{align} m'<1.501\times 10^{12}(\log(p^r-1))(\log(p^s+1))(\log \log(p^s+1)). \end{align} $$

Since Proposition 3.3 implies that $p^s \le p^{r-1}<1.718\times 10^{15}$ , we see from (4.1) that

(4.2) $$ \begin{align} m'<6.702\times 10^{15}. \end{align} $$

On the other hand, we deduce from Lemma 3.1 and (3.26) that

(4.3) $$ \begin{align} m'>\frac{n\log(p^s+1)}{\log p}>\frac{p^r \log(p^r+1)}{\log p}. \end{align} $$

Now, by (3.16),

(4.4) $$ \begin{align} 0<n-m'\kappa+\mu<AB^{-m'}, \end{align} $$

where

$$ \begin{align*} m'=rm+s,\quad \kappa=\frac{\log p}{\log(p^s+1)},\quad \mu=\frac{\log(p^r-1)}{\log(p^s+1)},\quad A=\frac{p^r-p^s-1}{\log(p^s+1)},\quad B=p. \end{align*} $$

Lemma 4.1. Let $\kappa $ , $\mu $ , $A>0$ and $B \ge 1$ be real numbers and let $M'$ be a positive integer. Let $p/q$ be a convergent of the continued fraction expansion of $\kappa $ such that $q>6M'$ , and put $\varepsilon =\|\mu q\|-M'\| \kappa q\|$ , where $\|\cdot \|$ denotes the distance from the nearest integer. If $\varepsilon>0$ , then inequality (4.4) has no integer solution $(n,m')$ satisfying

$$ \begin{align*} \frac{\log(Aq/\varepsilon)}{\log B}\le m' \le M'. \end{align*} $$

Proof. Since the assertion is identical with that of [Reference Dujella and Pethő11, Lemma 5a] if the middle term of inequalities (4.4) is multiplied by $-1$ , the lemma is proved in the same way as [Reference Dujella and Pethő11, Lemma 5a].

By Proposition 3.3, (4.2) and (4.4), we may apply Lemma 4.1 with $M'=6.702\times 10^{15}$ in the ranges

$$ \begin{align*} 2\le p <\sqrt{R},\quad 1 \le s<r<\log_p R \end{align*} $$

with $(p,s)\ne (2,1)$ , where $R=3.436\times 10^{15}$ . For $7 \le p <\sqrt {R}$ , the first step of reduction gives $m' \le 43$ , which contradicts (4.3) with $p \ge 7$ and $r \ge 2$ . For $p=5$ , the first and second steps of reduction give $m' \le 52$ and $m' \le 30$ , respectively. The latter contradicts (4.3) with $p=5$ and $r \ge 2$ . For $p=3$ , the first and second steps of reduction give $m' \le 75$ and $m'\le 45$ , respectively, which, together with (4.3), yields $r=2$ . For $p=2$ , the first and second steps of reduction give $m' \le 126$ and $m' \le 75$ , respectively, from which by (4.3) we obtain $r \in \{3,4\}$ .

Thus, it remains to consider the cases where

(4.5) $$ \begin{align} (p,r,s)\in \{(2,3,2),(2,4,2),(2,4,3),(3,2,1)\}. \end{align} $$

In view of the bounds for $m'=rm+s$ obtained above, it suffices to check that (3.14) with (4.5) has no solution $(m,n)$ in the ranges $m \le 24$ and $n \le 34$ , which can be easily done. Therefore, the theorem is proved.

Acknowledgement

The authors thank the anonymous referee for suggesting the addition of a connection between Theorem 1.1 and the results in [Reference Leung, Ma and Schmidt19], which led to Corollary 1.2.

References

Abdollahi, A. and Mohammadi Hassanabadi, A., ‘Noncyclic graph of a group’, Comm. Algebra 35 (2007), 20572081.CrossRefGoogle Scholar
Baker, A. and Davenport, H., ‘The equations $3{x}^2-2={y}^2$ and $8{x}^2-7={z}^2$ ’, Q. J. Math. Oxford Ser. (2) 20 (1969), 129137.CrossRefGoogle Scholar
Balasubramanian, R. and Shorey, T. N., ‘On the equation $a\left({x}^m-1\right)/ \left(x-1\right)=b\left({y}^n-1\right)/ \left(y-1\right)$ ’, Math. Scand. 46 (1980), 177182.CrossRefGoogle Scholar
Bateman, P. T. and Stemmler, R. M., ‘Waring’s problem for algebraic number fields and primes of the form $({p}^r-1)/ ({p}^d-1)$ ’, Illinois J. Math. 6 (1962), 142156.CrossRefGoogle Scholar
Bennett, M. A., Garbuz, B. and Marten, A., ‘Goormaghtigh’s equation: small parameters’, Publ. Math. Debrecen 96 (2020), 91110.CrossRefGoogle Scholar
Bennett, M. A., Gherga, A. and Kreso, D., ‘An old and new approach to Goormaghtigh’s equation’, Trans. Amer. Math. Soc. 373 (2020), 57075745.CrossRefGoogle Scholar
Bugeaud, Y., Mignotte, M. and Siksek, S., ‘Classical and modular approaches to exponential Diophantine equations, I: Fibonacci and Lucas perfect powers’, Ann. of Math. (2) 163 (2006), 9691018.CrossRefGoogle Scholar
Bugeaud, Y. and Shorey, T. N., ‘On the number of solutions of the generalized Ramanujan–Nagell equation’, J. reine angew. Math. 539 (2001), 5574.Google Scholar
Bugeaud, Y. and Shorey, T. N., ‘On the Diophantine equation $\left({x}^m-1\right)/ \left(x-1\right)=\left({y}^n-1\right)/ \left(y-1\right)$ ’, Pacific J. Math. 207 (2002), 6175.CrossRefGoogle Scholar
Davenport, H., Lewis, D. J. and Schinzel, A., ‘Equations of the form $f(x)=g(y)$ ’, Q. J. Math. Oxford Ser. (2) 12 (1961), 304312.CrossRefGoogle Scholar
Dujella, A. and Pethő, A., ‘A generalization of a theorem of Baker and Davenport’, Q. J. Math. Oxford Ser. (2) 49 (1998), 291306.CrossRefGoogle Scholar
He, B., ‘A remark on the Diophantine equation $({x}^3-1)/ (x-1)=({y}^n-1)/ (y-1)$ ’, Glas. Mat. Ser. III 44 (2009), 16.CrossRefGoogle Scholar
He, B. and Togbé, A., ‘On the number of solutions of Goormaghtigh equation for given $x$ and $y$ ’, Indag. Math. (N. S.) 19 (2008), 6572.CrossRefGoogle Scholar
Karanikolov, K., ‘Sur une équation diophantienne considérée par Goormaghtigh’, Ann. Polon. Math. 14 (1963), 6976 (in French).CrossRefGoogle Scholar
Laishram, S. and Shorey, T. N., ‘Baker’s explicit $abc$ -conjecture and applications’, Acta Arith. 155 (2012), 419429.CrossRefGoogle Scholar
Le, M.-H., ‘On the Diophantine equation $({x}^3-1)/ (x-1)=({y}^n-1)/ (y-1)$ ’, Trans. Amer. Math. Soc. 351 (1999), 10631074.CrossRefGoogle Scholar
Le, M.-H., ‘Exceptional solutions of the exponential Diophantine equation $({x}^3-1)/ (x-1)=({y}^n-1)/ (y-1)$ ’, J. reine angew. Math. 543 (2002), 187192.Google Scholar
Le, M.-H., ‘On Goormaghtigh’s equation $({x}^3-1)/ (x-1)=({y}^n-1)/ (y-1)$ ’, Acta Math. Sinica (Chinese Ser.) 45 (2002), 505508 (in Chinese).Google Scholar
Leung, K.-H., Ma, S.-H. and Schmidt, B., ‘Proper partial geometries with Singer group and pseudogeometric partial difference sets’, J. Combin. Theory Ser. A 115 (2008), 147177.CrossRefGoogle Scholar
Ljunggren, W., ‘Some theorems on indeterminate equations of the form $\left({x}^n-1\right)/ \left(x-1\right)={y}^q$ ’, Norsk Mat. Tidsskr. 25 (1943), 1720 (in Norwegian).Google Scholar
Luca, F., ‘On an equation of Goormaghtigh’, Mosc. J. Comb. Number Theory 1 (2011), 7488.Google Scholar
Makowski, A. and Schinzel, A., ‘Sur l’équation indéterminée de R. Goormaghtigh’, Mathesis 68 (1959), 128142 (in French).Google Scholar
Makowski, A. and Schinzel, A., ‘Sur l’équation indéterminée de R. Goormaghtigh (Deuxième note)’, Mathesis 70 (1965), 9496 (in French).Google Scholar
Matveev, E. M., ‘An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II’, Izv. Math. 64 (2000), 12171269.CrossRefGoogle Scholar
Mignotte, M. and Voutier, P. M., ‘A kit for linear forms in three logarithms’, Preprint, 2023, arXiv:2205.08899v2; with an appendix by M. Laurent.CrossRefGoogle Scholar
Nesterenko, Y. V. and Shorey, T. N., ‘On the equation of Goormaghtigh’, Acta Arith. 83 (1998), 381389.CrossRefGoogle Scholar
Ratat, R., Interméd. des math. 23 (1916), 150.Google Scholar
Rose, J. and Goormaghtigh, R., Interméd. des math. 24 (1917), 8890.Google Scholar
Saradha, N., ‘Application of the explicit $abc$ -conjecture to two Diophantine equations’, Acta Arith. 151 (2012), 401419.CrossRefGoogle Scholar
Shorey, T. N., ‘Integers with identical digits’, Acta Arith. 53 (1989), 187205.CrossRefGoogle Scholar
Shorey, T. N., ‘Exponential Diophantine equations involving products of consecutive integers and related equations’, in: Number Theory (eds. Bambah, R. P., Dumir, V. C. and Hans-Gill, R. J.) (Birkhäuser, Basel, 2000), 463495.Google Scholar
Shorey, T. N., ‘An equation of Goormaghtigh and Diophantine approximations’, in: Current Trends in Number Theory (eds. Adhikari, S. D., Katre, S. A. and Ramakrishnan, B.) (Hindustan Book Agency, New Delhi, 2002), 185197.CrossRefGoogle Scholar
Shorey, T. N., ‘Diophantine approximations, Diophantine equations, transcendence and applications’, Indian J. Pure Appl. Math. 37 (2006), 939.Google Scholar
Shorey, T. N. and Tijdeman, R., ‘New applications of Diophantine approximations to Diophantine equations’, Math. Scand. 39 (1976), 518.CrossRefGoogle Scholar
Tijdeman, R., ‘Some applications of Diophantine approximation’, in: Number Theory for the Millennium III (eds. Bennett, M. A., Berndt, B. C., Boston, N., Diamond, H. G., Hildebrand, A. J. and Phillpp, W.) (A. K. Peters, Natick, MA, 2002), 261284.Google Scholar
Yang, H. and Fu, R.-Q., ‘A note on the Goormaghtigh equation’, Period. Math. Hungar. 79 (2019), 8693.CrossRefGoogle Scholar
Yuan, P.-Z., ‘On the Diophantine equation $({x}^3-1)/ (x-1)=({y}^n-1)/ (y-1)$ ’, J. Number Theory 112 (2005), 2025.CrossRefGoogle Scholar