No CrossRef data available.
Article contents
ON A GENERALISATION OF A RESTRICTED SUM FORMULA FOR MULTIPLE ZETA VALUES AND FINITE MULTIPLE ZETA VALUES
Published online by Cambridge University Press: 24 July 2019
Abstract
We prove a new linear relation for multiple zeta values. This is a natural generalisation of the restricted sum formula proved by Eie, Liaw and Ong. We also present an analogous result for finite multiple zeta values.
Keywords
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 101 , Issue 1 , February 2020 , pp. 23 - 34
- Copyright
- © 2019 Australian Mathematical Publishing Association Inc.
References
Eie, M., Liaw, W.-C. and Ong, Y. L., ‘A restricted sum formula among multiple zeta values’, J. Number Theory
129 (2009), 908–921.Google Scholar
Horikawa, Y., Oyama, K. and Murahara, H., ‘A note on derivation relations for multiple zeta values and finite multiple zeta values’, Preprint, 2018, arXiv:1809.08389[NT].Google Scholar
Ihara, K., Kaneko, M. and Zagier, D., ‘Derivation and double shuffle relations for multiple zeta values’, Compos. Math.
142 (2006), 307–338.Google Scholar
Kaneko, M., ‘Finite multiple zeta values’, RIMS Kôkyûroku Bessatsu
B68 (2017), 175–190 (in Japanese).Google Scholar
Kaneko, M. and Yamamoto, S., ‘A new integral-series identity of multiple zeta values and regularizations’, Selecta Math. (N.S.)
24 (2018), 2499–2521.Google Scholar
Murahara, H., ‘Derivation relations for finite multiple zeta values’, Int. J. Number
13 (2017), 419–427.Google Scholar
Oyama, K., ‘Ohno-type relation for finite multiple zeta values’, Kyushu J. Math.
72 (2018), 277–285.Google Scholar
Tanaka, T., ‘Restricted sum formula and derivation relation for multiple zeta values’, Preprint, 2013, arXiv:1303.0398 [NT].Google Scholar