Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T07:37:44.226Z Has data issue: false hasContentIssue false

ON MONOTONE INCREASING REPRESENTATION FUNCTIONS

Published online by Cambridge University Press:  17 July 2023

SÁNDOR Z. KISS*
Affiliation:
Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
CSABA SÁNDOR
Affiliation:
Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH, Műegyetem rkp. 3., H-1111 Budapest, Hungary e-mail: csandor@math.bme.hu
QUAN-HUI YANG
Affiliation:
School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, PR China e-mail: yangquanhui01@163.com
Rights & Permissions [Opens in a new window]

Abstract

Let $k\ge 2$ be an integer and let A be a set of nonnegative integers. The representation function $R_{A,k}(n)$ for the set A is the number of representations of a nonnegative integer n as the sum of k terms from A. Let $A(n)$ denote the counting function of A. Bell and Shallit [‘Counterexamples to a conjecture of Dombi in additive number theory’, Acta Math. Hung., to appear] recently gave a counterexample for a conjecture of Dombi and proved that if $A(n)=o(n^{{(k-2)}/{k}-\epsilon })$ for some $\epsilon>0$, then $R_{\mathbb {N}\setminus A,k}(n)$ is eventually strictly increasing. We improve this result to $A(n)=O(n^{{(k-2)}/{(k-1)}})$. We also give an example to show that this bound is best possible.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

Let $\mathbb {N}$ be the set of nonnegative integers and let A be a subset of nonnegative integers. We use $A^n$ to denote the Cartesian product of n sets A, that is,

$$ \begin{align*}A^n=\{(a_1,a_2,\ldots,a_n):~a_1,a_2,\ldots,a_n\in A\}.\end{align*} $$

Let

$$ \begin{align*}R_{A,k}(n)=|\{ (a_{1}, a_2,\dots{}, a_{k})\in A^k: a_{1} +a_2+\cdots + a_{k} = n \}|, \end{align*} $$
$$ \begin{align*}R^{<}_{A,k}(n)=|\{ (a_{1}, a_2,\dots{}, a_{k})\in A^k: a_{1} + a_2+\cdots+ a_{k} = n, a_{1} <a_2< \cdots{} < a_{k} \}|, \end{align*} $$
$$ \begin{align*}R^{\le}_{A,k}(n)=|\{ (a_{1},a_2, \dots{} a_{k})\in A^k:a_{1} +a_2+ \cdots + a_{k} = n, a_{1} \le a_2\le \cdots{} \le a_{k} \}|, \end{align*} $$

where $|\cdot |$ denotes the cardinality of a finite set. We say that $R_{A,k}(n)$ is monotonically increasing in n from a certain point on (or eventually monotone increasing) if there exists an integer $n_{0}$ such that $R_{A,k}(n+1) \ge R_{A,k}(n)$ for all integers $n\ge n_0$ . We define the monotonicity of the other two representation functions $R^{<}_{A,k}(n)$ and $R^{\le }_{A,k}(n)$ in the same way.

We denote the counting function of the set A by

$$ \begin{align*} A(n) = \sum_{\overset{a \in A}{a \le n}}1. \end{align*} $$

We define the lower asymptotic density of a set A of natural numbers by

$$ \begin{align*} \liminf_{n \rightarrow \infty}\frac{A(n)}{n} \end{align*} $$

and the asymptotic density by

$$ \begin{align*} \lim_{n \rightarrow \infty}\frac{A(n)}{n} \end{align*} $$

whenever the limit exists. The generating function of a set A of natural numbers is denoted by

$$ \begin{align*} G_{A}(x) = \sum_{a\in A}x^{a}. \end{align*} $$

Obviously, if $\mathbb {N}\setminus A$ is finite, then each of the functions $R_{A,2}(n), R^{<}_{A,2}(n)$ and $R^{\le }_{A,2}(n)$ is eventually monotone increasing. In [Reference Erdős, Sárközy, Sós and Alladi4, Reference Erdős, Sárközy and Sós5], Erdős et al. investigated whether there exists a set A for which $\mathbb {N}\setminus A$ is infinite and the representation functions are monotone increasing from a certain point on. They proved the following theorems.

Theorem A. The function $R_{A,2}(n)$ is monotonically increasing from a certain point on if and only if the sequence A contains all the integers from a certain point on, that is, there exists an integer $n_{1}$ with

$$ \begin{align*} A \cap \{n_{1}, n_{1}+1, n_{1}+2, \dots{} \} = \{n_{1}, n_{1}+1, n_{1}+2, \dots{} \}. \end{align*} $$

Theorem B. There exists an infinite set $A\subseteq \mathbb {N}$ such that $A(n) < n - cn^{1/3}$ for $n> n_{0}$ and $R^{<}_{A,2}(n)$ is monotone increasing from a certain point on.

Theorem C. If

$$ \begin{align*}A(n) = o\bigg(\frac{n}{\log n}\bigg),\end{align*} $$

then the functions $R^{<}_{A,2}(n)$ and $R^{\le }_{A,2}(n)$ cannot be monotonically increasing in n from a certain point on.

Theorem D. If $A\subseteq \mathbb {N}$ is an infinite set with

$$ \begin{align*}\lim_{n\rightarrow \infty}\frac{n-A(n)}{\log n} = \infty, \end{align*} $$

then $R^{\le }_{A,2}(n)$ cannot be monotone increasing from a certain point on.

The last theorem was proved independently by Balasubramanian [Reference Balasubramanian1]. Very little is known when $k> 2$ . The following result was proved many years ago in [Reference Tang8] and independently in [Reference Kiss6].

Theorem E. If k is an integer with $k> 2$ , $A \subseteq \mathbb {N}$ and $R_{A,k}(n)$ is monotonically increasing in n from a certain point on, then

$$ \begin{align*} A(n) = o\bigg(\frac{n^{2/k}}{(\log n)^{2/k}}\bigg) \end{align*} $$

cannot hold.

Dombi [Reference Dombi3] constructed sets A of asymptotic density $\tfrac 12$ such that for $k> 4$ , the function $R_{A,k}(n)$ is monotone increasing from a certain point on. His constructions are based on the Rudin–Shapiro sets and Thue–Morse sequences. However, Dombi gave the following conjecture.

Dombi’s conjecture. If $\mathbb {N}\setminus A$ is infinite, then $R_{A,k}(n)$ cannot be strictly increasing.

For $k \ge 3$ , Bell and Shallit [Reference Bell and Shallit2] recently gave a counterexample of Dombi’s conjecture by applying tools from automata theory and logic. They also proved the following result.

Theorem F. Let k be an integer with $k\ge 3$ and let $F\subseteq \mathbb {N}$ with $0\notin F$ . If $F(n) = o(n^{\alpha })$ for $\alpha < (k-2)/k$ and $A = \mathbb {N}\setminus F$ , then $R_{A,k}(n)$ is eventually strictly increasing.

In this paper, we improve this result in the following theorem.

Theorem 1.1. Let k be an integer with $k\ge 3$ . If $A \subseteq \mathbb {N}$ satisfies

$$ \begin{align*}A(n) \leqslant \frac{n^{{(k-2)}/{(k-1)}}}{\sqrt[k-1]{(k-2)!}} - 2\end{align*} $$

for all sufficiently large integers n, then $R_{\mathbb {N}\setminus A,k}(n)$ is eventually strictly increasing.

In particular, for $k = 3$ , this gives the following corollary.

Corollary 1.2. If $A \subseteq \mathbb {N}$ satisfies $A(n) \leqslant \sqrt {n} - 2$ for all sufficiently large integers n, then $R_{\mathbb {N}\setminus A,3}(n)$ is eventually strictly increasing.

After we uploaded our paper to arXiv, we were informed that Mihalis Kolountzakis proved in an unpublished note that if $A \subseteq \mathbb {N}$ satisfies $A(n) \leqslant c\sqrt {n}$ for a sufficiently small positive constant c, then $R_{\mathbb {N}\setminus A,3}(n)$ is eventually strictly increasing. We improve the constant factor in the following result.

Theorem 1.3. If $A \subseteq \mathbb {N}$ satisfies $A(n) \leqslant ({2}/{\sqrt {3}}) \sqrt {n}-2$ for all sufficiently large integers n, then $R_{\mathbb {N}\setminus A,3}(n)$ is eventually strictly increasing.

It turns out from the next theorem that the upper bound for the counting function of A in Theorem 1.1 is tight up to a constant factor.

Theorem 1.4. Suppose that $f(n)$ is a function satisfying $f(n)\rightarrow \infty $ as $n\rightarrow \infty $ . Then there is a set $A\subseteq \mathbb {N}$ such that $A(n)<\!\!\sqrt [k-1]{k-1}\cdot n^{{(k-2)}/{(k-1)}}+f(n)$ for all sufficiently large integers n and $R_{\mathbb {N}\setminus A,k}(n)<R_{\mathbb {N}\setminus A,k}(n-1)$ for infinitely many positive integers n.

Shallit [Reference Shallit7] recently constructed a set A with positive lower asymptotic density such that the function $R_{\mathbb {N}\setminus A,3}(n)$ is strictly increasing.

2 Proofs

The proofs of the theorems are based on the next lemma, coming from Bell and Shallit’s paper [Reference Bell and Shallit2] although not explicitly stated there.

Lemma 2.1. For any positive integers n and k with $k\ge 3$ ,

$$ \begin{align*}R_{\mathbb{N}\setminus A,k}(n)-R_{\mathbb{N}\setminus A,k}(n-1) &=\binom{n+k-2}{k-2}+\sum_{i=1}^{k-2}\binom{k}{i}(-1)^{i}\Bigg(\sum_{m=0}^{n}\binom{m+k-i-2}{k-i-2}R_{A,i}(n-m)\Bigg)\\ &\quad + (-1)^{k-1}kR_{A,k-1}(n)+(-1)^{k}(R_{A,k}(n)-R_{A,k}(n-1)). \end{align*} $$

Proof. Observe that

$$ \begin{align*} (1-x)(G_{\mathbb{N}\setminus A}(x))^{k}& = \sum_{n=0}^{\infty}R_{\mathbb{N}\setminus A,k}(n)x^{n}-\sum_{n=0}^{\infty}R_{\mathbb{N}\setminus A,k}(n)x^{n+1}\\ &=R_{\mathbb{N}\setminus A,k}(0)+\sum_{n=1}^{\infty}(R_{\mathbb{N}\setminus A,k}(n)-R_{\mathbb{N}\setminus A,k}(n-1))x^{n}. \end{align*} $$

However,

$$ \begin{align*} &(1-x)((G_{\mathbb{N}\setminus A)}(x))^{k} = (1-x)\bigg(\frac{1}{1-x}-G_{A}(x)\bigg)^{k} = (1-x)\sum_{i=0}^{k}\binom{k}{i}\frac{(-1)^{i}}{(1-x)^{k-i}}G_{A}(x)^{i}\\ &=\frac{1}{(1-x)^{k-1}} + \sum_{i=1}^{k-2}\binom{k}{i}\frac{(-1)^{i}}{(1-x)^{k-i-1}}G_{A}(x)^{i}+(-1)^{k-1}kG_{A}(x)^{k-1}+(-1)^{k}(1-x)G_{A}(x)^{k}. \end{align*} $$

It is well known that

$$ \begin{align*} \frac{1}{(1-x)^{m}} = \sum_{n=0}^{\infty}\binom{n+m-1}{m-1}x^{n}. \end{align*} $$

It follows that

$$ \begin{align*} &R_{\mathbb{N}\setminus A,k}(0)+\sum_{n=1}^{\infty}(R_{\mathbb{N}\setminus A,k}(n)-R_{\mathbb{N}\setminus A,k}(n-1))x^{n}\\ &\quad=\sum_{n=0}^{\infty}\binom{n+k-2}{k-2}x^{n} + \sum_{i=1}^{k-2}(-1)^{i}\binom{k}{i}\sum_{n=0}^{\infty}\Bigg(\sum_{m=0}^{n}\binom{m+k-i-2}{k-i-2}R_{A,i}(n-m)\Bigg)x^{n}\\ &\qquad +(-1)^{k-1}k\sum_{n=0}^{\infty}R_{A,k-1}(n)x^{n}+(-1)^{k}R_{A,k}(0)+(-1)^{k}\sum_{n=0}^{\infty}(R_{A,k}(n)-R_{A,k}(n-1))x^{n}. \end{align*} $$

By comparing the coefficient of $x^{n}$ on both sides of this equation, Lemma 2.1 follows immediately.

Proof of Theorem 1.1.

Clearly,

$$ \begin{align*} R_{A,i}(n) & =|\{ (a_{1}, a_2,\dots{}, a_{i})\in A^i: a_{1} + a_2+\cdots{} + a_{i} = n \}|\\ &\le |\{ (a_{1},a_2, \dots{},a_{i-1})\in A^{i-1}: a_{1},a_2, \dots{} ,a_{i-1} \le n \}| = A(n)^{i-1}. \end{align*} $$

By Lemma 2.1, there exist constants $c_{1},c_{2},c_{3}, c_{4}$ only depending on k such that

$$ \begin{align*} &R_{\mathbb{N}\setminus A,k}(n)-R_{\mathbb{N}\setminus A,k}(n-1)\\ &\quad= \binom{n+k-2}{k-2}+\sum_{i=1}^{k-2}\binom{k}{i}(-1)^{i}\Bigg(\sum_{m=0}^{n}\binom{m+k-i-2}{k-i-2}R_{A,i}(n-m)\Bigg)\\ &\qquad +(-1)^{k-1}kR_{A,k-1}(n)+(-1)^{k}(R_{A,k}(n)-R_{A,k}(n-1))\\ &\quad\ge \frac{n^{k-2}}{(k-2)!}-\sum_{i=1}^{k-2}2^{k}\sum_{m=0}^{n}\binom{m+k-i-2}{k-i-2}A(n)^{i-1}-kR_{A,k-1}(n)-A(n)^{k-1}\\ &\quad\ge \frac{n^{k-2}}{(k-2)!}-\sum_{i=1}^{k-2}2^{k}A(n)^{i-1}\binom{n+k-i-1}{k-i-2}\\ &\qquad -k\bigg(\frac{n^{{(k-2)}/{(k-1)}}}{\sqrt[k-1]{(k-2)!}}\bigg)^{k-2} -\bigg(\frac{n^{{(k-2)}/{(k-1)}}}{\sqrt[k-1]{(k-2)!}}-2\bigg)^{k-1}\\ &\quad\ge \frac{n^{k-2}}{(k-2)!}-c_{1}\sum_{i=1}^{k-2}A(n)^{i-1}n^{k-i-2}-k\cdot\frac{n^{{(k-2)^{2}}/{(k-1)}}}{((k-2)!)^{{(k-2)}/{(k-1)}}}\\ &\qquad -\bigg(\frac{n^{k-2}}{(k-2)!}-2(k-1)\frac{n^{{(k-2)^2}/{(k-1)}}} {((k-2)!)^{{(k-2)}/{(k-1)}}}+c_{2}n^{{(k-2)(k-3)}/{(k-1)}}\bigg)\\ &\quad\ge \frac{n^{k-2}}{(k-2)!}-c_{3}n^{k-3}-k\frac{n^{{(k-2)^{2}}/{(k-1)}}}{((k-2)!)^{{(k-2)}/{(k-1)}}} \\ &\qquad -\bigg(\frac{n^{k-2}}{(k-2)!}-\frac{2(k-1)n^{{(k-2)^{2}}/{(k-1)}}}{((k-2)!)^{{(k-2)}/{(k-1)}}} +c_{2}n^{{(k-2)(k-3)}/{(k-1)}}\bigg)\\ &\quad= \frac{k-2}{((k-2)!)^{{(k-2)}/{(k-1)}}}\cdot n^{{(k-2)^{2}}/{(k-1)}}-c_{4}n^{k-3}. \end{align*} $$

Hence, $R_{\mathbb {N}\setminus A,k}(n)-R_{\mathbb {N}\setminus A,k}(n-1)>0$ when n is large enough.

Lemma 2.2. For any set A of natural numbers and for any natural number n, one has $R_{A, 3}(n) \leqslant \tfrac 34 A(n)^2+\{\tfrac 14A(n)^{2}\},$ where $\{x\}$ denotes the fractional part of x.

Note that Lemma 2.2 is sharp: if $A = \{0,1,\dots {} ,m\}$ , then

$$ \begin{align*} R_{A, 3}\bigg(\bigg \lfloor \frac{3m}{2} \bigg \rfloor \bigg) = \frac{3}{4} A\bigg(\bigg \lfloor \frac{3m}{2} \bigg \rfloor\bigg)^2+\bigg\{\frac{A( \lfloor {3m}/{2} \rfloor)^{2}}{4}\bigg\}, \end{align*} $$

where $\lfloor y\rfloor $ denotes the maximal integer not greater than y.

Proof of Lemma 2.2.

Fix a natural number n. Let $A \cap [1, n]=\{a_1<a_2<\cdots <a_m\}$ and $\overline {A}=\{n-a_m<n-a_{m-1}<\cdots <n-a_1\}$ . For $i=1,2,\ldots ,m$ , we define

$$ \begin{align*}A_i=\{a_i+a_1<a_i+a_2<\cdots<a_i+a_{m+1-i}<a_{i+1}+a_{m+1-i}<\cdots<a_m+a_{m+1-i}\}.\end{align*} $$

Clearly,

$$ \begin{align*} R_{A, 3}(n)=\sum_{i=1}^m|A_i\cap \overline{A}| & \leqslant \sum_{i=1}^m \min \{2 m-2 i+1, m\}\\ &=\sum_{i=1}^{\lfloor{m}/{2}\rfloor} m+\sum_{i=\lfloor{m}/{2}\rfloor+1}^m(2 m-2 i+1)\\ &=m\bigg\lfloor\frac{m}{2}\bigg\rfloor+\bigg(m-\bigg\lfloor\frac{m}{2}\bigg\rfloor\bigg)^2=\frac{3}{4} m^2+\bigg\{\frac{m^2}{4}\bigg\}. \\[-3.4pc] \end{align*} $$

Proof of Theorem 1.3.

Applying Lemma 2.1 for $k = 3$ ,

$$ \begin{align*} &R_{\mathbb{N} \backslash A,3}(n) -R_{\mathbb{N} \backslash A,3}(n-1) \\ &\quad = n + 1 -3\sum_{m=0}^{n}R_{A,1}(n-m)+3R_{A,2}(n)-(R_{A,3}(n)-R_{A,3}(n-1)) \\ &\quad = n + 1 - 3A(n) + 3R_{A,2}(n) - (R_{A, 3}(n) - R_{A, 3}(n-1)). \end{align*} $$

Hence, by Lemma 2.2,

$$ \begin{align*} &R_{\mathbb{N} \backslash A,3}(n) -R_{\mathbb{N} \backslash A,3}(n-1)\ge n + 1 - 3A(n) - R_{A,3}(n) \\ &\quad \ge n+1-3\bigg(\frac{2}{\sqrt{3}}\sqrt{n}-2\bigg) -\frac{3}{4}\bigg(\frac{2}{\sqrt{3}}\sqrt{n}-2\bigg)^{2}-\frac{1}{4}=\frac{15}{4}> 0, \end{align*} $$

which completes the proof.

Proof of Theorem 1.4.

We may suppose that $f(n)<\!\!\sqrt [k-1]{k-1}\cdot n^{{(k-2)}/{(k-1)}}$ . We define an infinite sequence of natural numbers $N_{1}, N_{2}, \dots {}$ by induction. Let $N_{1} = 100k^4$ . Assume that $N_{1}, \dots {} ,N_{j}$ are already defined. Let $N_{j+1}$ be an even number with $N_{j+1}> 100k^4N_{j}^{k-1}$ and $f(n)> (k-1)(N_{1}^{k-2} + \cdots {} + N_{j}^{k-2})$ for every $n \ge N_{j+1}$ . We define the set A by

$$ \begin{align*} A = \bigcup_{j=1}^{\infty}\{N_{j}, 2N_{j}, 3N_{j}, \dots{} ,(k-1)N_{j}^{k-1}\}. \end{align*} $$

First, we give an upper estimation for $A(n)$ . Let $n\ge 100k^4$ . Then there exists an index j such that $N_{j} \le n < N_{j+1}$ . Define l as the largest integer with $l \le (k-1)N_{j}^{k-2}$ and $lN_{j} \le n$ . Then,

$$ \begin{align*} &A(n) -\!\!\sqrt[k-1]{k-1}n^{{(k-2)}/{(k-1)}} \\ &\quad\le (k-1)(N_{1}^{k-2} + \cdots{} + N_{j}^{k-2}) + l - \!\!\sqrt[k-1]{k-1}(lN_{j})^{{(k-2)}/{(k-1)}}\\ &\quad=(k-1)(N_{1}^{k-2} + \cdots{} + N_{j}^{k-2}) + l^{{(k-2)}/{(k-1)}}(l^{{1}/{(k-1)}}-(k-1)^{{1}/{(k-1)}}N_{j}^{{(k-2)}/{(k-1)}})\\ &\quad \le f(n), \end{align*} $$

which implies that

$$ \begin{align*}A(n)<\!\!\sqrt[k-1]{k-1}\cdot n^{{(k-2)}/{(k-1)}}+f(n). \end{align*} $$

Next, we shall prove that there exist infinitely many positive integers n such that $R_{\mathbb {N}\setminus A,k}(n)<R_{\mathbb {N}\setminus A,k}(n-1)$ . To prove this, we divide into two cases according to the parity of k.

Suppose that k is an odd integer. For $j=1,2,\ldots ,$ we define

$$ \begin{align*}u_j=(k-1)N_{j}^{k-1} + 100(k-2)(k-1)^3N_{j}^{k-2}. \end{align*} $$

Now, we show that $R_{\mathbb {N}\setminus A,k}(u_j) < R_{\mathbb {N}\setminus A,k}(u_j-1)$ when j is large enough.

Since all the elements of A are even and $u_j-1$ is odd, it follows that $R_{A,k}(u_j-1)=0$ . By Lemma 2.1,

(2.1) $$ \begin{align} &\nonumber R_{\mathbb{N}\setminus A,k}(u_j) - R_{\mathbb{N}\setminus A,k}(u_j-1)\\ &\quad=\nonumber \binom{u_j+k-2}{k-2}+\sum_{i=1}^{k-2}\binom{k}{i}(-1)^{i}\Bigg(\sum_{m=0}^{u_j}\binom{m+k-i-2}{k-i-2}R_{A,i}(u_j-m)\Bigg)\\ &\qquad \nonumber + (-1)^{k-1}kR_{A,k-1}(u_j)+ (-1)^{k}(R_{A,k}(u_j)-R_{A,k}(u_j-1))\\ &\quad\le \nonumber\binom{u_j+k-2}{k-2}+k^2\Bigg(\sum_{m=0}^{u_j}\binom{m+k-4}{k-4}R_{A,2}(u_j-m)\Bigg)\\ &\qquad +\sum_{i=3}^{k-2}2^{k}\sum_{m=0}^{u_j}\binom{m+k-i-2}{k-i-2}A(u_j)^{i-1}+ kR_{A,k-1}(u_j)-R_{A,k}(u_j). \end{align} $$

Next we shall give a bound for each term of the right-hand side of (2.1). There exists a constant $c_5$ only depending on k such that

(2.2) $$ \begin{align} \binom{u_j+k-2}{k-2} \le \frac{(k-1)^{k-2}N_{j}^{k^{2}-3k+2}+100(k-2)^2(k-1)^{k}N_{j}^{k^{2}-3k+1}+c_{5}N_{j}^{k^{2}-3k}}{(k-2)!} \end{align} $$

and

(2.3) $$ \begin{align} & k^2\sum_{m=0}^{u_j}\binom{m+k-4}{k-4}R_{A,2}(u_j-m)\le k^2\sum_{m=0}^{u_j}\binom{m+k-4}{k-4}A(u_j-m) \nonumber\\ &\quad\le \nonumber k^2\sum_{m=0}^{u_j}\binom{m+k-4}{k-4}A(kN_{j}^{k-1})\le k^2\sum_{m=0}^{u_j}\binom{m+k-4}{k-4}2\sqrt[k-1]{k-1}(kN_j^{k-1})^{{(k-2)}/{(k-1)}} \\ &\quad\le \nonumber k^2\sum_{m=0}^{u_j}\binom{m+k-4}{k-4}2k N_j^{k-2}=2k^3N_j^{k-2}\binom{u_j+k-3}{k-3}\\ &\quad\le 2k^3N_j^{k-2}\binom{kN_j^{k-1}}{k-3}\le \frac{2k^k}{(k-3)!}N_j^{k^2-3k+1}. \end{align} $$

Furthermore,

(2.4) $$ \begin{align} &\nonumber\sum_{i=3}^{k-2}2^{k}\sum_{m=0}^{u_j}\binom{m+k-i-2}{k-i-2}A(u_j)^{i-1}\\ &\quad\le \nonumber c_{6}\sum_{i=3}^{k-2}2^{k}\sum_{m=0}^{u_j}\binom{m+k-i-2}{k-i-2}((N_{j}^{k-1})^{{(k-2)}/{(k-1)}})^{i-1}\\ &\quad\le\nonumber c_{6}\sum_{i=3}^{k-2}2^{k}N_{j}^{(k-2)(i-1)}\sum_{m=0}^{u_j}\binom{m+k-i-2}{k-i-2}\\ &\quad= \nonumber c_{6}\sum_{i=3}^{k-2}2^{k}N_{j}^{(k-2)(i-1)}\binom{u_j+k-i-1}{k-i-1}\\ &\quad\le c_{7}\sum_{i=3}^{k-2}N_{j}^{(k-2)(i-1)}\cdot N_{j}^{(k-1)(k-i-1)} =c_{7}\sum_{i=3}^{k-2}N_{j}^{k^{2}-3k-i+3} \le c_{8}N_{i}^{k^{2}-3k}, \end{align} $$

where $c_{6}, c_{7}$ and $c_{8}$ are constants only depending on k. Moreover,

(2.5) $$ \begin{align} R_{A,k-1}(u_j))&\le \nonumber A(u_j)^{k-2} \le A(kN_{j}^{k-1})^{k-2}\\ & \le (2\sqrt[k-1]{k-1}(kN_{j}^{k-1})^{{(k-2)}/{(k-1)}})^{k-2} \le (2k)^{k-2}N_{j}^{(k-2)^{2}}. \end{align} $$

Obviously,

$$ \begin{align*} &R_{A,k}(u_j) \\ &\quad\ge \bigg|\bigg\{(x_{1}, \dots{} ,x_{k})\in (\mathbb{Z}^+)^k: \sum_{t=1}^k x_t=u_j, N_{j}\mid x_{t}, x_{t} \le (k-1)N_{j}^{k-1}~\text{for}~t=1,\ldots,k\bigg\}\bigg|\\ &\quad=\bigg|\bigg\{(y_{1}, \dots{} ,y_{k})\in (\mathbb{Z}^+)^k: \sum_{t=1}^k y_t = \frac{u_j}{N_j}, y_{t} \le (k-1)N_{j}^{k-2}~\text{for}~t=1,\ldots,k\bigg\}\bigg|\\ &\quad=\bigg|\bigg\{(y_{1}, \dots{} ,y_{k})\in (\mathbb{Z}^+)^k: \sum_{t=1}^k y_t = \frac{u_j}{N_j}\bigg\} \bigg|\\ &\qquad - \bigg|\bigg\{(y_{1}, \dots{} ,y_{k})\in (\mathbb{Z}^+)^k: \sum_{t=1}^k y_t = \frac{u_j}{N_j},~y_{t}> (k-1)N_{j}^{k-2}~\text{for some}~t\in \{1,\ldots,k\}\bigg\}\bigg|. \end{align*} $$

We see that

$$ \begin{align*} &\bigg|\bigg\{(y_{1}, \dots{} ,y_{k})\in (\mathbb{Z}^+)^k: y_{1} + \cdots{} + y_{k} = \frac{u_j}{N_j}\bigg\}\bigg|\\ &\quad= \binom{{u_j}/{N_j}-1}{k-1} \ge \frac{N_{j}^{k^{2}-3k+2}+100(k-2)(k-1)^{k+2}N_{j}^{k^{2}-3k+1}+c_{9}N_{j}^{k^{2}-3k}}{(k-1)!}, \end{align*} $$

where $c_{9}$ is a constant only depending on k, and

$$ \begin{align*} &\bigg|\bigg\{(y_{1}, \dots{} ,y_{k})\in (\mathbb{Z}^+)^k: \sum_{t=1}^k y_t = \frac{u_j}{N_j},~y_{t}> (k-1)N_{j}^{k-2}~\text{for some}~t\in \{1,\ldots,k\}\bigg\}\bigg|\\ &\quad= k|\{(z_{1}, \dots{} ,z_{k})\in (\mathbb{Z}^+)^k: z_{1} + \cdots{} + z_{k} = 100(k-2)(k-1)^3N_{j}^{k-3}\}|\\ &\quad\le k(100(k-2)(k-1)^3)^kN_{j}^{k^{2}-3k}. \end{align*} $$

The last equality holds because if $y_{1} + \cdots {} + y_{k} = {u_j}/{N_j}$ with $y_{t}> (k-1)N_{j}^{k-1}$ , then

$$ \begin{align*}y_{1} + \cdots{} + y_{t-1} + (y_{t}-(k-1)N_{j}^{k-2}) + y_{t+1} + \cdots{} + y_{k} = 100(k-2)(k-1)^3N_{j}^{k-3},\end{align*} $$

where every term is positive. Furthermore, if $z_{1} + \cdots {} + z_{k} = 100(k-2)(k-1)^3N_{j}^{k-3}$ , $z_{i}\in \mathbb {Z}^{+}$ , then one can create k different sums of the form $ y_{1} + \cdots {} + y_{k} = {u_j}/{N_j}$ with $y_{i} = z_{i}$ if $i\neq t$ and $y_{t} = z_{t} + (k-1)N_{j}^{k-2}$ . Therefore,

(2.6) $$ \begin{align} R_{A,k}(u_j) \ge \frac{(k-1)^{k-1}N_{j}^{k^{2}-3k+2}+100(k-2)(k-1)^{k+2}N_{j}^{k^{2}-3k+1}+c_{10}N_{j}^{k^{2}-3k}}{(k-1)!}, \end{align} $$

where $c_{10}$ is a constant. In view of (2.1)–(2.6),

$$ \begin{align*} &R_{\mathbb{N}\setminus A,k}(u_j) - R_{\mathbb{N}\setminus A,k}(u_j-1)\\ & \quad\le \frac{(k-1)^{k-2}N_{j}^{k^{2}-3k+2}+100(k-2)^2(k-1)^k N_{j}^{k^{2}-3k+1}+c_{5}N_{j}^{k^{2}-3k}}{(k-2)!}\\ &\qquad +\frac{2k^k}{(k-3)!}N_j^{k^2-3k+1} + c_{8}N_{i}^{k^{2}-3k} + (2k)^{k-2}N_{j}^{(k-2)^{2}}\\ &\qquad -\frac{(k-1)^{k-1}N_{j}^{k^{2}-3k+2}+100(k-2)(k-1)^{k+2}N_{j}^{k^{2}-3k+1}+c_{10}N_{j}^{k^{2}-3k}}{(k-1)!}\\ &\quad=\bigg( \frac{2k^k}{(k-3)!} -100\frac{(k-1)^{k}}{(k-3)!} \bigg)N_{j}^{k^{2}-3k+1} + (2k)^{k-2}N_{j}^{(k-2)^{2}} + c_{11}N_{j}^{k^{2}-3k}, \end{align*} $$

where $c_{11}$ is a constant. Thus, we have $R_{\mathbb {N}\setminus A,k}(u_j) < R_{\mathbb {N}\setminus A,k}(u_j-1)$ when j is large enough.

If k is even, then the same argument shows that $R_{\mathbb {N}\setminus A,k}(u_j+1) < R_{\mathbb {N}\setminus A,k}(u_j)$ when j is large enough.

Footnotes

The first author was supported by the NKFIH Grant No. K129335; the second author was supported by the NKFIH Grant No. K129335.

References

Balasubramanian, B., ‘A note on a result of Erdős, Sárközy and Sós’, Acta Arith. 49 (1987), 4553.CrossRefGoogle Scholar
Bell, J. P. and Shallit, J., ‘Counterexamples to a conjecture of Dombi in additive number theory’, Acta Math. Hungar. 169 (2023), 562565.CrossRefGoogle Scholar
Dombi, G., ‘Additive properties of certain sets’, Acta Arith. 49 (1987), 4553.Google Scholar
Erdős, P., Sárközy, A. and Sós, V. T., ‘Problems and results on additive properties of general sequences IV’, in: Number Theory: Proceedings, Ootacamund, India, 1984, Lecture Notes in Mathematics, 1122 (ed. Alladi, K.) (Springer-Verlag, Berlin–Heidelberg, 1985), 85104.CrossRefGoogle Scholar
Erdős, P., Sárközy, A. and Sós, V. T., ‘Problems and results on additive properties of general sequences V’, Monatsh. Math. 102 (1986), 183197.CrossRefGoogle Scholar
Kiss, S. Z., ‘On the monotonicity of an additive representation function’, Publ. Math. Debrecen 73 (2008), 489495.CrossRefGoogle Scholar
Shallit, J., ‘A Dombi counterexample with positive lower density’, Preprint, 2023, arXiv:2302.02138.Google Scholar
Tang, M., ‘Some extensions of additive properties of general sequences’, Bull. Aust. Math. Soc. 73 (2006), 139146.CrossRefGoogle Scholar