Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T09:04:49.427Z Has data issue: false hasContentIssue false

An extension of Pontryagin duality

Published online by Cambridge University Press:  17 April 2009

B.J. Day
Affiliation:
Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let V denote the symmetric monoidal closed category of limit-space abelian groups and let L denote the full subcategory of locally compact Hausdorff abelian groups. Results of Samuel Kaplan on extension of characters to products of L–groups are used to show that each closed subgroup of a product of L-groups is a limit of L–groups. From this we deduce that the limit closure of L in V is reflective in V and has every group Pontryagin reflexive with respect to the structure of continuous convergence on the character groups. The basic duality LLop is then extended.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

[1]Antoine, Philippe, “Extension minimale de la catégorie des espaces topologiques”, C.R. Acad. Sci. Paris Sér. A 262 (1966), 13891392.Google Scholar
[2]Binz, Ernst, Continuous convergence on C(X) (Lecture Notes in Mathematics, 469. Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[3]Binz, E., “Charaktergruppen von Gruppen von S1-wertigen stetigen Funktionen”, Categorical Topology, 4392 (Proc. Conf. Mannheim, 1975. Lecture Notes in Mathematics, 540. Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar
[4]Binz, E. und Keller, H.H., “Funktionenräume in der Kategorie der Limesräume”, Ann. Acad. Sci. Fenn. Ser. A I 383 (1966), 121.Google Scholar
[5]Borceux, Francis and Day, B.J., “On product-preserving Kan extensions”, Bull. Austral. Math. Soc. 17 (1977), 247255.CrossRefGoogle Scholar
[6]Borceux, Francis and Day, Brian, “Universal algebra in a closed category”, J. Pure Appl. Algebra (to appear).Google Scholar
[7]Choquet, G., “Convergences”, Ann. Univ. Grenoble Sect. Sci. Math. Phys. (N.S.) 23 (1948), 57112.Google Scholar
[8]Day, Brian, “On closed categories of functors”, Reports of the Midwest Category Seminar IV, 138 (Lecture Notes in Mathematics, 137. Springer-Verlag, Berlin, Heidelberg, New York, 1970).CrossRefGoogle Scholar
[9]Day, Brian, “A reflection theorem for closed categories”, J. Pure Appl. Algebra 2 (1972), 111.CrossRefGoogle Scholar
[10]Day, Brian, “Limit spaces and closed span categories”, Category Seminar, Sydney 1972/73, 6574 (Lecture Notes in Mathematics, 420. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[11]Day, B.J., “On Pontryagin duality”, Glasgow Math. J. (to appear).Google Scholar
[12]Day, B.J. and Kelly, G.M., “Enriched functor categories”, Reports of the Midwest Category Seminar III, 178191 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).CrossRefGoogle Scholar
[13]Day, B.J. and Kelly, G.M., “On topological quotient maps preserved by pullbacks or products”, Proc. Cambridge Philos. Soc. 67 (1970), 553558.CrossRefGoogle Scholar
[14]Eilenberg, Samuel and Kelly, G. Max, “Closed categories”, Proc. Conf. Categorical Algebra, La Jolla, California, 1965, 421562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).CrossRefGoogle Scholar
[15]Hofmann, Karl Heinrich, “Categories with convergence, exponential functors, and cohomology of compact abelian groups”, Math. z. 104 (1968), 106140.CrossRefGoogle Scholar
[16]Hofmann, Karl Heinrich, “Category theoretical methods in topological algebra”, Categorical Topology, 345403 (Proc. Conf. Mannheim, 1975. Lecture Notes in Mathematics, 540. Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar
[17]Kaplan, Samuel, “Extensions of the Pontrjagin duality II: direct and inverse sequences”, Duke Math. J. 17 (1950), 419435.CrossRefGoogle Scholar
[18]Kelly, G.M., “Monomorphisms, epimorphisms, and pull-backs”, J. Austral. Math. Soc. 9 (1969), 124142.CrossRefGoogle Scholar
[19]Lambek, J. and Rattray, B.A., “Localization at injectives in complete categories”, Proc. Amer. Math. Soc. 41 (1973), 19.CrossRefGoogle Scholar
[20]Machado, Armando, “Espaces d'Antoine et pseudo-topologies”, Cahiers Topologie Géom. Différentielle 14 (1973), 309327.Google Scholar
[21]Lane, S. Mac, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).CrossRefGoogle Scholar
[22]Schubert, Horst, Categories (translated by Gray, Eva. Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar