Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:15:04.975Z Has data issue: false hasContentIssue false

Asymptotical well behaviour for constrained minimisation problems

Published online by Cambridge University Press:  17 April 2009

D. Aussel
Affiliation:
Laboratoire MANO, Université de Perpignan, 52 Av. de Villeneuve, 66860 Perpignan Cedex, France e-mail: aussel@univ-perp.fr, chou@univ-perp.fr
C. C. Chou
Affiliation:
Laboratoire MANO, Université de Perpignan, 52 Av. de Villeneuve, 66860 Perpignan Cedex, France e-mail: aussel@univ-perp.fr, chou@univ-perp.fr
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is devoted to the study of the links between stationary sequence and minimising sequence for constrained minimisation problems. The constraint set is not supposed to be convex and no differentiability assumption is made on the objective function. New tools are developed in this general framework and we prove a necessary and a sufficient condition for such problems to have a “constrained asymptotical well behaviour” (that is, each stationary sequence is a minimising sequence). Our work extend that of Auslender, Cominetti and Crouzeix.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Angleraud, P., ‘Caractérisation duale du bon comportement de fonctions convexes’, C.R. Acad. Sci. Paris Sér. I Math. 314 (1992), 583586.Google Scholar
[2]Auslender, A. and Crouzeix, J.-P., ‘Well behaved asymptotical convex functions’, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 101122.Google Scholar
[3]Auslender, A., Cominetti, R., and Crouzeix, J.-P., ‘Convex functions with unbounded level sets and applications to duality theory’, SIAM J. Optim. 3 (1993), 669687.CrossRefGoogle Scholar
[4]Aussel, D., Corvellec, J.-N. and Lassonde, M., ‘Mean value property and subdifferential criteria for lower semicontinuous functions’, Trans. Amer. Math. Soc. 347 (1995), 41474161.CrossRefGoogle Scholar
[5]Aussel, D., Corvellec, J.-N. and Lassonde, M., ‘Nonsmooth constrained optimization and multidirectionel mean value theorem’, SIAM J. Optim. 9 (1999), 690706.CrossRefGoogle Scholar
[6]Bernoussi, B., Bolintineanu, S. and Chou, C.C., ‘Pareto optimizing and scalarly stationary sequences’, J. Math. Anal. Appl. 220 (1998), 553561.CrossRefGoogle Scholar
[7]Borwein, J.M. and Preiss, D., ‘A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions’, Trans. Amer. Math. Soc. 303 (1987), 517527.CrossRefGoogle Scholar
[8]Castellani, M. and Pappalardo, M., ‘Characterizations of p-convex functions’, Nonconvex Optim. Anal. 27 (1998), 219233.Google Scholar
[9]Clarke, F.H., Optimization and nonsmooth analysis, Classics Appl. Math. 5, 2nd edition (SIAM, Philadelphia, PA, 1990).CrossRefGoogle Scholar
[10]Cornet, B., ‘Existence of slow solutions for a class of differential inclusion’, J. Math. Anal. Appl. 96 (1983), 130147.CrossRefGoogle Scholar
[11]Cornet, B., ‘Lipschitzian solutions of perturbed nonlinear programming problems’, SIAM J. Control Optim. 24 (1986), 11231137.CrossRefGoogle Scholar
[12]Chou, C.C., Ng, K.F. and Pang, J.-S., ‘Minimizing and stationary sequences of constrained optimization problems’, SIAM J. Control Optim. 36 (1998), 19081936.CrossRefGoogle Scholar
[13]Deville, R., Godefroy, G. and Zizler, V., Smoothness and renormings in Banach spaces (Longman Scientific and Technical, London, 1993).Google Scholar
[14]Ekeland, I., ‘On the variational principle’, J. Math. Anal. Appl. 47 (1974), 324353.CrossRefGoogle Scholar
[15]Huang, L.R., Ng, K.-F. and Penot, J.-P., ‘On minimizing and critical sequences in nonsmooth optimization’, SIAM J. Optim. 10 (2000), 9991019.CrossRefGoogle Scholar
[16]Janin, R., Sur la dualité et la sensibilityé dans les problèmes de programmation mathématiques, (Thèse de doctorat) (Universite Paris VI, 1974).Google Scholar
[17]Lemaire, B., ‘Bonne position, conditionnement, et bon comportement asymptotique’, Sem. Anal. Convexe 22 (1992).Google Scholar
[18]Pang, J.-S., ‘Error bounds in mathematical programming’, Math. Programming 79 (1997), 299332.CrossRefGoogle Scholar
[19]Penot, J.-P., ‘Well-behavior, well-posedness and nonsmooth analysisPliska. Stud. Math. Bulgar. 12 (1998), 141190.Google Scholar
[20]Penot, J.-P., ‘Genericity of well-posedness, perturbations and smooth variational principles’, Set-Valued Anal. 9 (2001), 131157.CrossRefGoogle Scholar
[21]Phelps, R.R., Convex functions, monotone operators and differentiability, Lectures Notes in Mathematics 1364, (Second edition) (Springer-Verlag, Berlin, 1993).Google Scholar
[22]Powell, M.J.D., ‘Some global convergence properties of a variable metric algorithm for minimization without exact line searches’, (Proc. Symp. Appl. Math. New York City 1975), in Nonlinear Programming (American Mathematical Society, Profidence, R.I., 1976), pp. 5372.Google Scholar
[23]Rockafellar, R.T., ‘Favorable classes of Lipschitz continuous functions in subgradient optimization’, in Progress in Nondifferential Optimization, IIASA Collab. Proc. Ser. (IIASA, Laxenburg, 1982), pp. 125143.Google Scholar
[24]Vial, J.-P., ‘Strong and weak convexity of sets and functions’, Math. Oper. Res. 8 (1983), 231259.CrossRefGoogle Scholar