Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-11T00:16:57.604Z Has data issue: false hasContentIssue false

HEAT KERNEL METHOD FOR THE LEVI-CIVITÁ EQUATION IN DISTRIBUTIONS AND HYPERFUNCTIONS

Published online by Cambridge University Press:  04 May 2015

JAEYOUNG CHUNG*
Affiliation:
Department of Mathematics, Kunsan National University, Kunsan 573-701, Korea email jychung@kunsan.ac.kr
PRASANNA K. SAHOO
Affiliation:
Department of Mathematics, University of Louisville, Louisville, KY 40292, USA email sahoo@louisville.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G$ be a commutative group and $\mathbb{C}$ the field of complex numbers, $\mathbb{R}^{+}$ the set of positive real numbers and $f,g,h,k:G\times \mathbb{R}^{+}\rightarrow \mathbb{C}$. In this paper, we first consider the Levi-Civitá functional inequality

$$\begin{eqnarray}\displaystyle |f(x+y,t+s)-g(x,t)h(y,s)-k(y,s)|\leq {\rm\Phi}(t,s),\quad x,y\in G,t,s>0, & & \displaystyle \nonumber\end{eqnarray}$$
where ${\rm\Phi}:\mathbb{R}^{+}\times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}$ is a symmetric decreasing function in the sense that ${\rm\Phi}(t_{2},s_{2})\leq {\rm\Phi}(t_{1},s_{1})$ for all $0<t_{1}\leq t_{2}$ and $0<s_{1}\leq s_{2}$. As an application, we solve the Hyers–Ulam stability problem of the Levi-Civitá functional equation
$$\begin{eqnarray}\displaystyle u\circ S-v\otimes w-k\circ {\rm\Pi}\in {\mathcal{D}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})\quad [\text{respectively}\;{\mathcal{A}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})] & & \displaystyle \nonumber\end{eqnarray}$$
in the space of Gelfand hyperfunctions, where $u,v,w,k$ are Gelfand hyperfunctions, $S(x,y)=x+y,{\rm\Pi}(x,y)=y,x,y\in \mathbb{R}^{n}$, and $\circ$, $\otimes$, ${\mathcal{D}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})$ and ${\mathcal{A}}_{L^{\infty }}^{\prime }(\mathbb{R}^{2n})$ denote pullback, tensor product and the spaces of bounded distributions and bounded hyperfunctions, respectively.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Chung, J., ‘Hyers–Ulam stability on a generalized quadratic functional equation in distributions and hyperfunctions’, J. Math. Phys. 50 (2009), 113519.CrossRefGoogle Scholar
Chung, J., ‘A heat kernel approach to the stability of exponential equations in Schwartz distributions and hyperfunctions’, J. Math. Phys. 51 (2010), 053523.CrossRefGoogle Scholar
Chung, J., Hunt, H., Perkins, A. and Sahoo, P. K., ‘Stability of a simple Levi-Civitá functional on non-unital commutative semigroup’, Proc. Indian Acad. Sci. 124(4) (2014), 365381.Google Scholar
Chung, S.-Y., ‘A heat equation approach to distributions with Lp growth’, Commun. Korean Math. Soc. 9(4) (1994), 897903.Google Scholar
Chung, S. Y., Kim, D. and Lee, E. G., ‘Periodic hyperfunctions and Fourier series’, Proc. Amer. Math. Soc. 128 (2000), 24212430.CrossRefGoogle Scholar
Ebanks, B., ‘General solution of a simple Levi-Civitá functional equation on non-abelian groups’, Aequationes Math. 85(3) (2013), 359378.CrossRefGoogle Scholar
Gelfand, I. M. and Shilov, G. E., Generalized Functions II (Academic Press, New York, 1968).Google Scholar
Gelfand, I. M. and Shilov, G. E., Generalized Functions IV (Academic Press, New York, 1968).Google Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators I (Springer, Berlin, 1983).Google Scholar
Hyers, D. H., ‘On the stability of the linear functional equation’, Proc. Natl. Acad. Sci. USA 27 (1941), 222224.CrossRefGoogle ScholarPubMed
Levi-Civitá, T., ‘Sulle funzioni che ammetono una formula d’addizione del tipo f (x + y) =∑ i=1nX i(x)Y i(y)’, R.C. Accad. Lincei 22 (1913), 181183.Google Scholar
Matsuzawa, T., ‘A calculus approach to hyperfunctions III’, Nagoya Math. J. 118 (1990), 133153.CrossRefGoogle Scholar
Sahoo, P. K. and Kannappan, Pl., Introduction to Functional Equations (CRC Press–Taylor and Francis, Boca Raton, FL, 2011).CrossRefGoogle Scholar
Schwartz, L., Théorie des Distributions (Hermann, Paris, 1966).Google Scholar
Shulman, E. V., ‘Group representations and stability of functional equations’, J. Lond. Math. Soc. (2) 54 (1996), 111120.CrossRefGoogle Scholar
Widder, D. V., The Heat Equation (Academic Press, New York, 1975).Google Scholar