Published online by Cambridge University Press: 17 April 2009
A topological space is E0 (resp. E1) provided every point is the countable intersection of neighborhoods (resp. closed neighborhoods). For i = 0 and i = 1, characterizations of minimal Ei. spaces (Ei. spaces with no strictly coarser Ei. topology) and Ei-closed spaces (Ei. spaces which are closed in every Ei. space containing them) are given; for example, the properties of minimal Ei. and minimal first countable Ti+1 are shown to be equivalent. Minimal E0 spaces are characterized as countable spaces with the cofinite topology, and minimal E1 spaces are characterized as E1-closed and semiregular spaces. E0-closed spaces are shown to be precisely the finite discrete spaces.