Published online by Cambridge University Press: 17 April 2009
This paper originated with our interest in the open question “If every pure subgroup of an LCA group G is closed, must G be discrete ?” that was raised by Armacost. The answer was surprisingly easy, but led to some interesting questions. We attempted to characterise those LCA groups that contain a proper pure dense subgroup, and found that every non-discrete torsion-free LCA group contains a proper pure dense subgroup; so does every non-discrete infinite self-dual torsion LCA group. We also give a necessary and sufficient condition for a torsion LCA group to contain a proper pure dense subgroup.