Article contents
Pediatric Deep Brain Stimulation for Dystonia: Current State and Ethical Considerations
Published online by Cambridge University Press: 07 September 2020
Abstract
Dystonia is a movement disorder that can have a debilitating impact on motor functions and quality of life. There are 250,000 cases in the United States, most with childhood onset. Due to the limited effectiveness and side effects of available treatments, pediatric deep brain stimulation (pDBS) has emerged as an intervention for refractory dystonia. However, there is limited clinical and neuroethics research in this area of clinical practice. This paper examines whether it is ethically justified to offer pDBS to children with refractory dystonia. Given the favorable risk-benefit profile, it is concluded that offering pDBS is ethically justified for certain etiologies of dystonia, but it is less clear for others. In addition, various ethical and policy concerns are discussed, which need to be addressed to optimize the practice of offering pDBS for dystonia. Strategies are proposed to help address these concerns as pDBS continues to expand.
- Type
- Articles
- Information
- Cambridge Quarterly of Healthcare Ethics , Volume 29 , Special Issue 4: Clinical Neuroethics , October 2020 , pp. 557 - 573
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
Notes
1. Keeping Our Promise: Cook Children’s 100th DBS Patient; available at https://www.youtube.com/watch?v=BXtsJvgEIl8. (last accessed 21 Feb 2020).
2. Bronte-Stewart, H, Taira, T, Valldeoriola, F, Merello, M, Marks, W, Albanese, A, et al. Inclusion and exclusion criteria for DBS in dystonia. Movement Disorders 2011;26(S1):S5–16. doi:10.1002/mds.23482.CrossRefGoogle ScholarPubMed
3. Lumsden, DE. The child with dystonia. Paediatrics and Child Health 2018;28(10):459–67. doi:10.1016/j.paed.2018.04.016.CrossRefGoogle Scholar
4. See note 3, Lumsden 2018.
5. Johnco, C, Storch, EA. Evaluating risks and benefit of deep brain stimulation for treatment-refractory Tourette syndrome. Letter. Neurosurgery 2016;78(5):E762–4. doi:10.1227/NEU.0000000000001222.CrossRefGoogle ScholarPubMed
6. Zuk, P, Torgerson, L, Sierra-Mercado, D, Lázaro-Muñoz, G. Neuroethics of neuromodulation: An update. Current Opinion in Biomedical Engineering 2018;8:45–50. doi:10.1016/j.cobme.2018.10.003.CrossRefGoogle ScholarPubMed
7. Elkaim, LM, De Vloo, P, Kalia, SK, Lozano, AM, Ibrahim, GM. Deep brain stimulation for childhood dystonia: Current evidence and emerging practice. Expert Review of Neurotherapeutics 2018;18(10):773–84. doi:10.1080/14737175.2018.1523721.CrossRefGoogle ScholarPubMed
8. Klein C, Lohmann K, Marras C, Münchau A. Hereditary Dystonia Overview. GeneReviews® [cited 2017 Jun 22]; available at https://www.ncbi.nlm.nih.gov/books/NBK1155/ (last accessed 23 Feb 2020).
9. Albanese, A, Bhatia, K, Bressman, SB, DeLong, MR, Fahn, S, Fung, VSC, et al. Phenomenology and classification of dystonia: A consensus update. Movement Disorders 2013;28(7):863–73. doi:10.1002/mds.25475.CrossRefGoogle ScholarPubMed
10. See note 3, Lumsden 2018.
11. Dystonia—Classifications, Symptoms and Treatment; available at https://www.aans.org/ (last accessed 21 Feb 2020).
12. Ostrem, JL, Starr, PA. Treatment of dystonia with deep brain stimulation. Neurotherapeutics 2008;5(2):320–30. doi:10.1016/j.nurt.2008.01.002.Google ScholarPubMed
13. Pizzolato, G, Mandat, T. Deep brain stimulation for movement disorders. Frontiers in Integrative Neuroscience 2012;6:2. doi:10.3389/fnint.2012.00002.CrossRefGoogle ScholarPubMed
14. Lumsden, DE, Kaminska, M, Tomlin, S, Lin, J-P. Medication use in childhood dystonia. European Journal of Paediatric Neurology 2016;20(4):625–9. doi:10.1016/j.ejpn.2016.02.003.CrossRefGoogle ScholarPubMed
15. See note 3, Lumsden 2018.
16. Hale, AT, Monsour, MA, Rolston, JD, Naftel, RP, Englot, DJ. Deep brain stimulation in pediatric dystonia: A systematic review. Neurosurgical Review 2018. doi:10.1007/s10143-018-1047-9.Google ScholarPubMed
17. Sanger, TD, Liker, M, Arguelles, E, Deshpande, R, Maskooki, A, Ferman, D, et al. Pediatric deep brain stimulation using awake recording and stimulation for target selection in an inpatient neuromodulation monitoring unit. Brain Sciences 2018;8(7):135. doi:10.3390/brainsci8070135.Google Scholar
18. Health C for D and R. Getting a Humanitarian Use Device to Market. FDA 2019 December; available at http://www.fda.gov/medical-devices/humanitarian-device-exemption/getting-humanitarian-use-device-market (last accessed 21 Feb 2020).
19. Humanitarian Device Exemption (HDE); available at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfhde/hde.cfm?id=H020007 (last accessed 21 Feb 2020).
20. See note 11, Dystonia—Classifications, Symptoms and Treatment.
21. See note 11, Dystonia—Classifications, Symptoms and Treatment.
22. Early-onset primary dystonia—Genetics Home Reference—NIH. U.S. National Library of Medicine; available at https://ghr.nlm.nih.gov/condition/early-onset-primary-dystonia (last accessed 22 Feb 2020).
23. Bertram, KL, Williams, DR. Delays to the diagnosis of cervical dystonia. Journal of Clinical Neuroscience 2016;25:62–4. doi:10.1016/j.jocn.2015.05.054.CrossRefGoogle Scholar
24. Defazio, G, Macerollo, A. Epidemiology of dystonia. In: Handbook of Dystonia. 2nd ed. Boca Raton, FL: Informa Health Care; 2012. doi:10.3109/9781841848525.Google Scholar
25. Albanese, A, Barnes, MP, Bhatia, KP, Fernandez-Alvarez, E, Filippini, G, Gasser, T, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: Report of an EFNS/MDS-ES Task Force. European Journal of Neurology 2006;13(5):433–44. doi:10.1111/j.1468-1331.2006.01537.x.CrossRefGoogle ScholarPubMed
26. Tekriwal, A, Baltuch, G. Deep brain stimulation: Expanding applications. Neurologia Mdico-Chirurgica 2015;55(12):861–77. doi:10.2176/nmc.ra.20150172.CrossRefGoogle ScholarPubMed
27. Marks, WA, Honeycutt, J, Acosta, F, Reed, M. Deep brain stimulation for pediatric movement disorders. Seminars in Pediatric Neurology 2009;16(2):90–8. doi:10.1016/j.spen.2009.04.001.Google ScholarPubMed
28. See note 3, Lumsden 2018.
29. Lumsden, DE, Kaminska, M, Gimeno, H, Tustin, K, Baker, L, Perides, S, et al. Proportion of life lived with dystonia inversely correlates with response to pallidal deep brain stimulation in both primary and secondary childhood dystonia. Developmental Medicine & Child Neurology 2013;55(6):567–74. doi:10.1111/dmcn.12117.Google ScholarPubMed
30. Parr, JR, Green, AL, Joint, C, Andrew, M, Gregory, RP, Scott, RB, et al. Deep brain stimulation in childhood: An effective treatment for early onset idiopathic generalised dystonia. Archives of Disease in Childhood 2007;92(8):708–11. doi:10.1136/adc.2006.095380.CrossRefGoogle ScholarPubMed
31. Mehrkens, JH, Borggraefe, I, Feddersen, B, Heinen, F, Bötzel, K. Early globus pallidus internus stimulation in pediatric patients with generalized primary dystonia: Long-term efficacy and safety. Journal of Child Neurology 2010;25(11):1355–61. doi:10.1177/0883073810365369.CrossRefGoogle ScholarPubMed
32. See note 3, Lumsden 2018.
33. Clausen, J. Ethical brain stimulation—Neuroethics of deep brain stimulation in research and clinical practice. European Journal of Neuroscience 2010;32(7):1152–62. doi:10.1111/j.1460-9568.2010.07421.x.CrossRefGoogle ScholarPubMed
34. Lewis, L, Butler, A, Jahanshahi, M. Depression in focal, segmental and generalized dystonia. Journal of Neurology 2008;255(11):1750–5. doi:10.1007/s00415-008-0020-x.Google ScholarPubMed
35. Krause, P, Lauritsch, K, Lipp, A, Horn, A, Weschke, B, Kupsch, A, et al. Long-term results of deep brain stimulation in a cohort of eight children with isolated dystonia. Journal of Neurology 2016;263(11):2319–26. doi:10.1007/s00415-016-8253-6.CrossRefGoogle Scholar
36. See note 34, Lewis et al. 2008.
37. See note 33, Clausen 2010.
38. Elkaim, LM, Alotaibi, NM, Sigal, A, Alotaibi, HM, Lipsman, N, Kalia, SK, et al. Deep brain stimulation for pediatric dystonia: A meta‐analysis with individual participant data. Developmental Medicine & Child Neurology 2019;61(1):49–56. doi:10.1111/dmcn.14063.CrossRefGoogle ScholarPubMed
39. Thenganatt, MA, Jankovic, J. Treatment of dystonia. Neurotherapeutics 2013;11(1):139–52. doi:10.1007/s13311-013-0231-4.CrossRefGoogle Scholar
40. Elia, AE, Bagella, CF, Ferr, F, Zorzi, G, Calandrella, D, Romito, LM. Deep brain stimulation for dystonia due to cerebral palsy: A review. European Journal of Paediatric Neurology 2018;22:308–15. doi:10.1016/j.ejpn.2017.12.002.CrossRefGoogle ScholarPubMed
41. See note 34, Lewis et al. 2008.
42. Halbig, TD. Pallidal stimulation in dystonia: Effects on cognition, mood, and quality of life. Journal of Neurology, Neurosurgery & Psychiatry 2005;76(12):1713–6. doi:10.1136/jnnp.2004.057992.CrossRefGoogle Scholar
43. See note 16, Hale et al. 2018.
44. See note 38, Elkaim et al. 2019.
45. See note 12, Ostrem, Starr 2008.
46. Burke, RE, Fahn, S, Marsden, CD, Bressman, SB, Moskowitz, C, Friedman, J. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 1985;35(1):73–7CrossRefGoogle ScholarPubMed.
47. See note 38, Elkaim et al. 2019.
48. See note 38, Elkaim et al. 2019.
49. See note 38, Elkaim et al. 2019.
50. See note 42, Halbig 2005.
51. Peto, V, Jenkinson, C, Fitzpatrick, R. PDQ-39: A review of the development, validation and application of a Parkinson’s disease quality of life questionnaire and its associated measures. Journal of Neurology 1998;245(S1):S10–4. doi:10.1007/PL00007730.CrossRefGoogle ScholarPubMed
52. Tsuboi, T, Jabarkheel, Z, Foote, KD, Okun, MS, Wagle, Shukla A. Importance of the initial response to GPi deep brain stimulation in dystonia: A nine year quality of life study. Parkinsonism & Related Disorders 2019;64:249–55. doi:10.1016/j.parkreldis.2019.04.024.CrossRefGoogle ScholarPubMed
53. Gimeno, H, Tustin, K, Lumsden, D, Ashkan, K, Selway, R, Lin, J-P. Evaluation of functional goal outcomes using the Canadian Occupational Performance Measure (COPM) following deep brain stimulation (DBS) in childhood dystonia. European Journal of Paediatric Neurology 2014;18(3):308–16. doi:10.1016/j.ejpn.2013.12.010.CrossRefGoogle Scholar
54. See note 53, Gimeno et al. 2014.
55. Koy, A, Bockhorn, N, Kühn, AA, Schneider, GH, Krause, P, Lauritsch, , et al. Adverse events associated with deep brain stimulation in patients with childhood-onset dystonia. Brain Stimulation 2019;12(5):1111–20. doi:10.1016/j.brs.2019.04.003.CrossRefGoogle ScholarPubMed
56. See note 38, Elkaim et al. 2019.
57. Kaminska, M, Perides, S, Lumsden, DE, Nakou, V, Selway, R, Ashkan, K, et al. Complications of deep brain stimulation (DBS) for dystonia in children—The challenges and 10 year experience in a large paediatric cohort. European Journal of Paediatric Neurology 2017;21(1):168–75. doi:10.1016/j.ejpn.2016.07.024.CrossRefGoogle Scholar
58. See note 57, Kaminska et al. 2017.
59. See note 57, Kaminska et al. 2017.
60. See note 38, Elkaim et al. 2019.
61. See note 12, Ostrem, Starr 2008.
62. See note 57, Kaminska et al. 2017.
63. Jitkritsadakul, O, Bhidayasiri, R, Kalia, SK, Hodaie, M, Lozano, AM, Fasano, A. Systematic review of hardware-related complications of deep brain stimulation: Do new indications pose an increased risk? Brain Stimulation 2017;10(5):967–76. doi:10.1016/j.brs.2017.07.003.CrossRefGoogle ScholarPubMed
64. See note 38, Elkaim et al. 2019.
65. See note 57, Kaminska et al. 2017.
66. See note 57, Kaminska et al. 2017.
67. See note 63, Jitkritsadakul et al. 2017.
68. See note 63, Jitkritsadakul et al. 2017.
69. Yang, H-J, Yun, JY, Kim, YE, Lim, YH, Kim, HJ, Paek, SH, et al. Sudden loss of the deep brain stimulation effect with high impedance without macroscopic fracture: A case report and review of the published literature. Neuropsychiatric Disease and Treatment 2015;11:1799. doi:10.2147/NDT.S86120.CrossRefGoogle ScholarPubMed
70. See note 69, Yang et al. 2015.
71. Liu, JKC, Soliman, H, Machado, A, Deogaonkar, M, Rezai, AR. Intracranial hemorrhage after removal of deep brain stimulation electrodes. Journal of Neurosurgery 2012;116(3):525–8. doi:10.3171/2011.10.jns11465.CrossRefGoogle ScholarPubMed
72. See note 71, Liu et al. 2012.
73. See note 57, Kaminska et al. 2017.
74. See note 38, Elkaim et al. 2019 (n = 321).
75. See note 57, Kaminska et al. 2017 (n = 129).
76. See note 63, Jitkritsadakul et al. 2017 (n = 592).
77. See note 57, Kaminska et al. 2017.
78. See note 38, Elkaim et al. 2019.
79. See note 12, Ostrem, Starr 2008.
80. See note 38, Elkaim et al. 2019.
81. See note 35, Krause et al. 2016.
82. See note 57, Kaminska et al. 2017.
83. See note 38, Elkaim et al. 2019.
84. See note 53, Gimeno et al. 2014.
85. See note 5, Johnco, Storch 2016.
86. Magnus, D, Rizk, N. Professional judgment and justice: Equal respect for the professional judgment of critical-care physicians. The American Journal of Bioethics 2016;16(1):1–2. doi:10.1080/15265161.2016.1128748.Google ScholarPubMed
87. Wicclair, MR, White, DB. Surgeons, intensivists, and discretion to refuse requested treatments. Hastings Center Report 2014;44(5):33–42. doi:10.1002/hast.356.CrossRefGoogle ScholarPubMed
88. See note 16, Hale et al. 2018.
89. See note 2, Bronte-Stewart et al. 2011.
90. Search of: Deep brain stimulation|dystonia—List results—ClinicalTrials.gov; available at https://clinicaltrials.gov/ct2/results?cond=dystonia&term=deep+brain+stimulation&cntry=&state=&city=&dist= (last accessed 21 Feb 2020).
91. See note 90, ClinicalTrials.gov.
92. Ford, PJ. Stimulating debate: Ethics in a multidisciplinary functional neurosurgery committee. Journal of Medical Ethics 2006;32(2):106–9. doi:10.1136/jme.200X.013151.CrossRefGoogle Scholar
93. Ladin, K, Marotta, SA, Butt, Z, Gordon, EJ, Daniels, N, Lavelle, TA, et al. A mixed-methods approach to understanding variation in social support requirements and implications for access to transplantation in the United States. Progress in Transplantation 2019;29(4):344–53. doi:10.1177/1526924819874387.CrossRefGoogle ScholarPubMed
94. Berry, KN, Daniels, N, Ladin, K. Should lack of social support prevent access to organ transplantation? The American Journal of Bioethics 2019;19(11):13–24. doi:10.1080/15265161.2019.1665728.CrossRefGoogle ScholarPubMed
95. See note 93, Ladin et al. 2019.
96. Bruce, CR, Minard, CG, Wilhelms, LA, Abraham, M, Amione-Guerra, J, Pham, L, et al. Caregivers of patients with left ventricular assist devices: Possible impacts on patients’ mortality and interagency registry for mechanically assisted circulatory support-defined morbidity events. Circulation: Cardiovascular Quality and Outcomes 2017;10(1):2. doi:10.1161/CIRCOUTCOMES.116.002879.Google ScholarPubMed
97. See note 19, Humanitarian Device Exemption.
98. See note 18, Health C for D and R.
99. Rossi, PJ, Giordano, J, Okun, MS. The problem of funding off-label deep brain stimulation: Bait-and-switch tactics and the need for policy reform. JAMA Neurology 2017;74(1):9. doi:10.1001/jamaneurol.2016.2530.CrossRefGoogle ScholarPubMed
100. Stroupe, KT, Weaver, FM, Cao, L, Ippolito, D, Barton, B, Burnette-Zeigler, IE, et al. Cost of deep brain stimulation for the treatment of Parkinson’s disease by surgical stimulation sites: Cost of deep brain stimulation by target site. Movement Disorders 2014;29(13):1666–74. doi:10.1002/mds.26029.CrossRefGoogle Scholar
101. Chen, T, Mirzadeh, Z, Lambert, M, Gonzalez, O, Moran, A, Shetter, AG, et al. Cost of deep brain stimulation infection resulting in explantation. Stereotactic and Functional Neurosurgery 2017;95(2):117–24. doi:10.1159/000457964.CrossRefGoogle ScholarPubMed
102. See note 57, Kaminska et al. 2017.
103. See note 57, Kaminska et al. 2017.
104. Rossi, PJ, Machado, A, Okun, MS. Medicare coverage of investigational devices: The troubled path forward for deep brain stimulation. JAMA Neurology 2014;71(5):535. doi:10.1001/jamaneurol.2013.6042.CrossRefGoogle ScholarPubMed
105. Shah, SJ, Krumholz, HM, Reid, KJ, Rathore, SS, Mandawat, A, Spertus, JA, et al. Financial stress and outcomes after acute myocardial infarction. PLoS One 2012;7(10):e47420. doi:10.1371/journal.pone.0047420.CrossRefGoogle ScholarPubMed
106. See note 92, Ford 2006.
107. Blumenthal-Barby, JS, Krieger, H. Cognitive biases and heuristics in medical decision making: A critical review using a systematic search strategy. Medical Decision Making 2015;35(4):543. doi:10.1177/0272989X14547740.CrossRefGoogle ScholarPubMed
108. Fagerlin, A, Zikmund-Fisher, BJ, Ubel, PA. How making a risk estimate can change the feel of that risk: Shifting attitudes toward breast cancer risk in a general public survey. Patient Education and Counseling 2005;57(3):294–9. doi:10.1016/j.pec.2004.08.007.CrossRefGoogle Scholar
109. Blumenthal-Barby, JS, Ubel, PA. In defense of “denial”: Difficulty knowing when beliefs are unrealistic and whether unrealistic beliefs are bad. The American Journal of Bioethics 2018;18(9):5. doi:10.1080/15265161.2018.1498934.CrossRefGoogle ScholarPubMed
110. Blumenthal-Barby, JS, Kostick, KM, Delgado, ED, Volk, RJ, Kaplan, HM, Wilhelms, LA, et al. Assessment of patients’ and caregivers’ informational and decisional needs for left ventricular assist device placement: Implications for informed consent and shared decision-making. The Journal of Heart and Lung Transplantation 2015;34(9):1182–9. doi:10.1016/j.healun.2015.03.026.CrossRefGoogle ScholarPubMed
111. See note 109, Blumenthal-Barby, Ubel 2018.
112. Bell E, Maxwell B, McAndrews MP, Sadikot A, Racine E. Hope and patients’ expectations in deep brain stimulation: Healthcare providers’ perspectives and approaches. The Journal of Clinical Ethics 2010;21(2):112–24.
113. See note 109, Blumenthal-Barby, Ubel 2018.
114. See note 109, Blumenthal-Barby, Ubel 2018.
115. See note 109, Blumenthal-Barby, Ubel 2018.
116. See note 109, Blumenthal-Barby, Ubel 2018.
117. See note 109, Blumenthal-Barby, Ubel 2018.
118. Lyreskog D. Ethical Issues in the Decision Making Process of Paediatric Deep Brain Stimulation; available at http://www.diva-portal.org/smash/get/diva2:732653/FULLTEXT01.pdf (last accessed 12 Dec 2018).
119. Grootens-Wiegers, P, Hein, IM, van den Broek, JM, de Vries, MC. Medical decision-making in children and adolescents: Developmental and neuroscientific aspects. BMC Pediatrics 2017;17(1):120. doi:10.1186/s12887-017-0869-x.CrossRefGoogle ScholarPubMed
120. Gilbert, F, Viaña, JNM, Ineichen, C. Deflating the “DBS causes personality changes” bubble. Neuroethics 2018; 1-17. doi:10.1007/s12152-018-9373-8.Google Scholar/
121. Gilbert, F, Goddard, E, Viaña, JNM, Carter, A, Horne, M. I miss being me: Phenomenological effects of deep brain stimulation. AJOB Neuroscience 2017;8(2):96–109. doi:10.1080/21507740.2017.1320319.CrossRefGoogle Scholar
122. Côté, JE. The enduring usefulness of Erikson’s concept of the identity crisis in the 21st century: An analysis of student mental health concerns. Identity 2018;18(4):251–63. doi:10.1080/15283488.2018.1524328.CrossRefGoogle Scholar
123. See note 121, Gilbert et al. 2017.
124. See note 121, Gilbert et al. 2017.
125. See note 120, Gilbert et al. 2018.
126. Pugh, J, Pycroft, L, Maslen, H, Aziz, T, Savulescu, J. Evidence-based neuroethics, deep brain stimulation and personality—Deflating, but not bursting, the bubble. Neuroethics 2018; 1-12. doi:10.1007/s12152-018-9392-5.Google Scholar
127. Gilbert, F, Cook, M, O’Brien, T, Illes, J. Embodiment and estrangement: Results from a first-in-human “intelligent BCI” trial. Science and Engineering Ethics 2019;25(1):83–96. doi:10.1007/s11948-017-0001-5.CrossRefGoogle ScholarPubMed
128. Kraemer, F. Me, myself and my brain implant: Deep brain stimulation raises questions of personal authenticity and alienation. Neuroethics 2013;6(3):483–97. doi:10.1007/s12152-011-9115-7.Google ScholarPubMed
129. Goering, S, Klein, E, Dougherty, DD, Widge, AS. Staying in the loop: Relational agency and identity in next-generation DBS for psychiatry. AJOB Neuroscience 2017;8(2):63. doi:10.1080/21507740.2017.1320320.CrossRefGoogle Scholar
130. See note 126, Pugh et al. 2018.
131. See note 127, Gilbert et al. 2019.
132. See note 129, Goering et al. 2017.
133. Baylis, F. “I am who i am”: On the perceived threats to personal identity from deep brain stimulation. Neuroethics 2013;6(3):517. doi:10.1007/s12152-011-9137-1.CrossRefGoogle ScholarPubMed
134. Becht, AI, Nelemans, SA, Branje, SJT, Vollebergh, WAM, Koot, HM, Meeus, WHJ. Identity uncertainty and commitment making across adolescence: Five-year within-person associations using daily identity reports. Developmental Psychology 2017;53(11):2103. doi:10.1037/dev0000374.CrossRefGoogle ScholarPubMed
135. Erikson, E. Youth: Identity and Crisis. New York: W. W. Norton Company; 1968. doi:10.1002/yd.29.Google Scholar
136. See note 121, Gilbert et al. 2017.
137. de Haan, S. Missing oneself or becoming oneself? The difficulty of what “becoming a different person” means. AJOB Neuroscience 2017;8(2):110–2. doi:10.1080/21507740.2017.1320330.CrossRefGoogle Scholar
138. Thomson, C, Segrave, R. “I miss you too”: More voices needed to examine the phenomenological effects of deep brain stimulation. AJOB Neuroscience 2017;8(2):122–3. doi:10.1080/21507740.2017.1320321.CrossRefGoogle Scholar
139. de Haan, S, Rietveld, E, Stokhof, M, Denys, D. Becoming more oneself? Changes in personality following DBS treatment for psychiatric disorders: Experiences of OCD patients and general considerations. PLoS One. 2017;12(4):e0175748. doi:10.1371/journal.pone.0175748.CrossRefGoogle ScholarPubMed
140. See note 120, Gilbert et al. 2018.
141. Lozano, AM, Lipsman, N, Bergman, H, Brown, P, Chabardes, S, Chang, JW, et al. Deep brain stimulation: Current challenges and future directions. Nature Reviews Neurology 2019;15(3):148–60. doi:10.1038/s41582-018-0128-2.CrossRefGoogle ScholarPubMed
142. Schlaepfer, TE, Fins, JJ. Deep brain stimulation and the neuroethics of responsible publishing: When one is not enough. JAMA 2010;303(8):775. doi:10.1001/jama.2010.140.CrossRefGoogle ScholarPubMed
143. Koy, A, Weinsheimer, M, Pauls, KAM, Kühn, AA, Krause, P, Huebl, J, et al. German registry of paediatric deep brain stimulation in patients with childhood-onset dystonia (GEPESTIM). European Journal of Paediatric Neurology 2017;21(1):136–46. doi:10.1016/j.ejpn.2016.05.023.CrossRefGoogle Scholar
144. Marks, W, Bailey, L, Sanger, TD. PEDiDBS: The pediatric international deep brain stimulation registry project. European Journal of Paediatric Neurology 2017;21(1):218–222. doi:10.1016/j.ejpn.2016.06.002.CrossRefGoogle ScholarPubMed
145. See note 6, Zuk et al. 2018.
146. See note 142, Schlaepfer, Fins 2010.
147. Kirklin, JK, Naftel, DC, Pagani, FD, Kormos, RL, Stevenson, LW, Blume, ED, et al. Seventh INTERMACS annual report: 15,000 patients and counting. The Journal of Heart and Lung Transplantation 2015;34(12):1495–504. doi:10.1016/j.healun.2015.10.003.CrossRefGoogle ScholarPubMed
148. See note 142, Schlaepfer, Fins 2010.
149. Grootens-Wiegers, P, Hein, IM, van den Broek, JM, de Vries, MC. Medical decision-making in children and adolescents: Developmental and neuroscientific aspects. BMC Pediatrics 2017;17(1):120. doi:10.1186/s12887-017-0869-x.CrossRefGoogle ScholarPubMed
150. Hein, IM, Troost, PW, Lindeboom, R, Benninga, MA, Zwaan, CM, van Goudoever, JB, et al. Accuracy of the MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR) for measuring children’s competence to consent to clinical research. JAMA Pediatrics 2014;168(12):1147–53. doi:10.1001/jamapediatrics.2014.1694.CrossRefGoogle ScholarPubMed
151. Feinberg J. The child’s right to an open future. In: Aiken W, LaFollette H, eds. Whose Child? Totowa, NJ: Rowman & Littlefield; 1980, at 124–53.
152. Austin, A, Lin, JP, Selway, R, Ashkan, K, Owen, T. What parents think and feel about deep brain stimulation in paediatric secondary dystonia including cerebral palsy: A qualitative study of parental decision-making. European Journal of Paediatric Neurology 2017;21(1):185–92. doi:10.1016/j.ejpn.2016.08.011.CrossRefGoogle ScholarPubMed
153. International Patient Decision Aid Standards (IPDAS) Collaboration IPDAS 2005: Criteria for Judging the Quality of Patient Decision Aids; available at www.ipdas.ohri.ca (last accessed 21 Feb 2020).
- 15
- Cited by