Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T18:41:26.279Z Has data issue: false hasContentIssue false

Effects of endophytism by Beauveria bassiana (Cordycipitaceae) on plant growth, Fusarium (Nectriaceae) disease, and Sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) in wheat (Poaceae)

Published online by Cambridge University Press:  23 March 2023

Zahra Torkaman
Affiliation:
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
Reza Talaei-Hassanloui*
Affiliation:
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
Ayda Khorramnejad
Affiliation:
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
Mohammad Reza Pashaei
Affiliation:
Gastroenterology and Hepatology Section, Department of Internal Medicine, Urmia University of Medical Science, Urmia, Iran
*
*Corresponding author. Email: rtalaei@ut.ac.ir

Abstract

Fungi living within a plant (i.e., endophytic fungi) can directly affect the growth of the host plant or have indirect effects by affecting levels of damage to the plant caused by insect herbivory or plant pathogens. Greenhouse and field trials were conducted to investigate the endophytic effects of the fungus Beauveria bassiana on wheat, on the wheat-feeding Sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae), and on the wheat pathogen, Fusarium culmorum (Nectriaceae), which causes root and crown rot disease. Conidia of B. bassiana were applied to wheat either by foliar spray, soil drench, or seed treatment. Seed treatment with conidia provided the highest re-isolation percentages: 91.7% in leaves, 95.8% in stems, and 91.7% in roots. Inoculated plants were taller and had greater wet and dry weights compared to control plants. In both greenhouse and field studies, E. integriceps that were fed inoculated plants laid eggs that were less likely to hatch. Inoculations reduced the incidence of root and crown rot disease by 42% under greenhouse conditions. These results document the potential of using endophytic infections of B. bassiana in wheat as a control measure for Sunn pest and root and crown rot disease.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Kevin Floate

References

Abdel-Hafez, S.I., Abo-Elyousr, K.A., and Abdel-Rahim, I.R. 2015. Leaf surface and endophytic fungi associated with onion leaves and their antagonistic activity against Alternaria porri. Czech Mycology, 67: 122.CrossRefGoogle Scholar
Akello, J., Dubois, T., Coyne, D., and Kyamanywa, S. 2008a. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27: 14371441. https://doi.org/10.1016/j.cropro.2008.07.003.CrossRefGoogle Scholar
Akello, J., Dubois, T., Coyne, D., and Kyamanywa, S. 2008b. Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue-cultured banana plants. Entomologia Experimentalis et Applicata, 129: 157165.CrossRefGoogle Scholar
Akello, J. and Sikora, R. 2012. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control, 61: 215221. https://doi.org/10.1016/j.biocontrol.2012.02.007.CrossRefGoogle Scholar
Akutse, K.S., Maniania, N.K., Fiaboe, K.K.M., van den Berg, J., and Ekesi, S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, 6: 293301. https://doi.org/10.1016/j.funeco.2013.01.003.CrossRefGoogle Scholar
Atugala, D. and Deshappriya, N. 2015. Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. Journal of the National Science Foundation, 43: 173187. https://doi.org/10.4038/jnsfsr.v43i2.7945.CrossRefGoogle Scholar
Bamisile, B.S., Akutse, K.S., Dash, C.K., Qasim, M., Carlos, L., Aguila, R., et al. 2020. Effects of seedling age on colonization patterns of Citrus limon plants by endophytic Beauveria bassiana and Metarhizium anisopliae and their influence on seedlings growth. Journal of Fungi, 6: 29. https://doi.org/10.3390/jof6010029.CrossRefGoogle ScholarPubMed
Beccari, G., Covarelli, L., and Nicholson, P. 2011. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum . Plant Pathology, 60: 671684. https://doi.org/10.1111/j.1365-3059.2011.02425.x.CrossRefGoogle Scholar
Bing, L.A. and Lewis, L.C. 1991. Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, 20: 12071211. https://doi.org/10.1093/ee/20.4.1207.CrossRefGoogle Scholar
Chekali, S., Gargouri, S., Paulitz, T., Nicol, J.M., and Rezgui, M. 2011. Effects of Fusarium culmorum and water stress on durum wheat in Tunisia. Crop Protection, 30: 718725. https://doi.org/10.1016/j.cropro.2011.01.007.CrossRefGoogle Scholar
Cherry, A.J., Banito, A., Djegui, D., and Lomer, C. 2004. Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana . International Journal of Pest Management, 50: 6773. https://doi.org/10.1080/09670870310001637426.CrossRefGoogle Scholar
Critchley, B.R. 1998. Literature review of Sunn pest Eurygaster integriceps Put. (Hemiptera, Scutelleridae). Crop Protection, 17: 271287.CrossRefGoogle Scholar
Dara, S.K. 2019. Non-entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects, 10: 277.CrossRefGoogle ScholarPubMed
Davari, A. and Parker, B.L. 2018. A review of research on Sunn pest (Eurygaster integriceps Puton (Hemiptera: Scutelleridae)) management published 2004–2016. Journal of Asia–Pacific Entomology, 2: 352360. https://doi.org/10.1016/j.aspen.2018.01.016.CrossRefGoogle Scholar
Donga, T.K., Vega, F.E., and Klingen, I. 2018. Establishment of the fungal entomopathogen Beauveria bassiana as an endophyte in sugarcane, Saccharum officinarum . Fungal Ecology, 35: 7077. https://doi.org/10.1016/j.funeco.2018.06.008.CrossRefGoogle Scholar
Gardes, M. and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2: 113118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x.CrossRefGoogle Scholar
Gaviria, J., Parra, P.P., and Gonzales, A. 2020. Selection of strains of Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) for endophytic colonization in coconut seedlings. Chilean Journal of Agriculture and Animal Science, 36: 313. https://doi.org/10.4067/S0719-38902020005000101.Google Scholar
Greenfield, M., Gómez-Jiménez, M.I., Ortiz, V., Vega, F.E., Kramer, M., and Parsa, S. 2016. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control, 95: 4048. https://doi.org/10.1016/j.biocontrol.2016.01.002.CrossRefGoogle ScholarPubMed
Griffin, M.R. 2007. Beauveria bassiana, a cotton endophyte with biocontrol activity against seedling disease. Ph.D. dissertation. University of Tennessee, Knoxville, Tennessee, United States of America.Google Scholar
Grosu, A.I., Sicuia, O.A., Dobre, A., Voaideş, C., and Cornea, C.P. 2015. Evaluation of some Bacillus spp. strains for the biocontrol of Fusarium graminearum and F. culmorum in wheat. Agriculture and Agricultural Science Procedia, 6: 559566. https://doi.org/10.1016/j.aaspro.2015.08.085.CrossRefGoogle Scholar
Guesmi-Jouini, J., Garrido-Jurado, I., López-Díaz, C., Ben Halima-Kamel, M., and Quesada-Moraga, E. 2014. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota : Hypocreales) as endophytes on artichoke Cynara scolymus . Journal of Invertebrate Pathology, 119: 14. https://doi.org/10.1016/j.jip.2014.03.004.CrossRefGoogle ScholarPubMed
Gurulingappa, P., McGee, P.A., and Sword, G. 2011. Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection, 30: 349353. https://doi.org/10.1016/j.cropro.2010.11.017.CrossRefGoogle Scholar
Gurulingappa, P., Sword, G.A., Murdoch, G., and McGee, P.A. 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biological Control, 55: 3441. https://doi.org/10.1016/j.biocontrol.2010.06.011.CrossRefGoogle Scholar
Hassan, S.E. 2017. Plant growth–promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research, 8: 687695. https://doi.org/10.1016/j.jare.2017.09.001.CrossRefGoogle ScholarPubMed
Hosseininaveh, V., Bandani, A., and Hosseininaveh, F. 2009. Digestive proteolytic activity in the Sunn pest, Eurygaster integriceps . Journal of Insect Science, 9: 70. https://doi.org/10.1673/031.009.7001.CrossRefGoogle ScholarPubMed
Humber, R.A. 1997. Fungi: identification. In Manual of techniques in insect pathology. Edited by Lacey, L.. Academic Press, Cambridge, Massachusetts, United States of America. Pp. 153185. https://doi.org/10.1016/B978-012432555-5/50011-7.CrossRefGoogle Scholar
Jaber, L.R., Araj, S., and Qasem, J.R. 2018. Compatibility of endophytic fungal entomopathogens with plant extracts for the management of sweet potato whitefly Bemesia tabaci Gennadius (Homoptera: Aleyrodidae). Biological Control, 117: 164171. https://doi.org/10.1016/j.biocontrol.2017.11.009.CrossRefGoogle Scholar
Jaber, L.R. and Enkerli, J. 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum . Biological Control, 103: 187195. https://doi.org/10.1016/j.biocontrol.2016.09.008.CrossRefGoogle Scholar
Jaber, L.R. and Ownley, B.H. 2018. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116: 3645. https://doi.org/10.1016/j.biocontrol.2017.01.018.CrossRefGoogle Scholar
Jaronski, S.T. and Mascarin, G.M. 2017. Mass production of fungal entomopathogens. In Microbial control of insect and mite pests: from theory to practice. Edited by Lacey, L.. Academic Press, Cambridge, Massachusetts, United States of America. Pp. 141155. https://doi.org/10.1016/B978-0-12-803527-6.00009-3.CrossRefGoogle Scholar
Klieber, J. and Reineke, A. 2015. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner, Tuta absoluta . Journal of Applied Entomology, 140: 580589. https://doi.org/10.1111/jen.12287.CrossRefGoogle Scholar
Koksel, H., Ozderen, T., Olanca, B., and Ozay, D.S. 2009. Effects of suni bug (Eurygaster spp.) damage on milling properties and semolina quality of durum wheats (Triticum durum L.). Cereal Chemistry, 86: 181186. https://doi.org/10.1094/CCHEM-86-2-0181.CrossRefGoogle Scholar
Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., and Goettel, M.S. 2015. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132: 141 https://doi.org/10.1016/j.jip.2015.07.009.CrossRefGoogle ScholarPubMed
Landa, B.B., López-Díaz, C., Jiménez-Fernández, D., Montes-Borrego, M., and Muñoz-Ledesma, F.J. 2013. In-plant detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. Journal of Invertebrate Pathology, 114: 128138. https://doi.org/10.1016/j.jip.2013.06.007.CrossRefGoogle ScholarPubMed
Lopez, D.C. and Sword, G.A. 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89: 5360. https://doi.org/10.1016/j.biocontrol.2015.03.010.CrossRefGoogle Scholar
Lopez, D.C., Zhu-Salzman, K., Ek-Ramos, M.J., and Sword, G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLOS One, 9: e103891. https://doi.org/10.1371/journal.pone.0103891.CrossRefGoogle Scholar
Mantzoukas, S., Chondrogiannis, C., and Grammatikopoulos, G. 2015. Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides . Entomologia Experimentalis et Applicata, 154: 7887. https://doi.org/10.1111/eea.12262.CrossRefGoogle Scholar
Mascarin, G.M. and Jaronski, S.T. 2016. The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32: 126. https://doi.org/10.1007/s11274-016-2131-3.CrossRefGoogle ScholarPubMed
Meyer-Wolfarth, F., Schrader, S., Oldenburg, E., Weinert, J., and Brunotte, J. 2017. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem. Mycotoxin Research, 33: 237244. https://doi.org/10.1007/s12550-017-0282-1.CrossRefGoogle Scholar
Moloinyane, S. and Nchu, F. 2019. The effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus, growth and volatile constituents of potted greenhouse grapevine (Vitis vinifera L.). Toxins, 11: 72. https://doi.org/10.3390/toxins11020072.CrossRefGoogle ScholarPubMed
Motallebi, P., Alkadri, D., Pisi, A., Nipoti, P., Tonti, S., Niknam, V., et al. 2015. Pathogenicity and mycotoxin chemotypes of Iranian Fusarium culmorum isolates on durum wheat, and comparisons with Italian and Syrian isolates. Phytopathologia Mediterranea, 54: 437445.Google Scholar
Muvea, A.M., Meyhöfer, R., Subramanian, S., Poehling, H.M., Ekesi, S., and Maniania, N.K. 2014. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci . PLOS One, 9: e108242. https://doi.org/10.1371/journal.pone.0108242.CrossRefGoogle ScholarPubMed
Ownley, B.H., Griffin, M.R., Klingeman, W.E., Gwinn, K.D., Moulton, J.K., and Pereira, R.M. 2008. Beauveria bassiana: endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98: 267270. https://doi.org/10.1016/j.jip.2008.01.010.CrossRefGoogle ScholarPubMed
Ownley, B.H. and Gwinn, K.D. 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. In The ecology of fungal entomopathogens. Edited by H.E. Roy, F.E. Vega, M.S. Goettel, D. Chandler, J.K. Pell, and E. Wajnberg. Springer Netherlands, Heidelberg, Germany. Pp. 113–128. https://doi.org/10.1007/978-90-481-3966- 8.CrossRefGoogle Scholar
Parsa, S., Ortiz, V., and Vega, F.E. 2013. Establishing fungal entomopathogens as endophytes: towards endophytic biological control. Journal of Visualized Experiments, 74: e50360. https://doi.org/10.3791%2F50360.Google Scholar
Posada, F., Aime, M.C., Peterson, S.W., and Rehner, S.A. 2007. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111: 748757. https://doi.org/10.1016/j.mycres.2007.03.006.CrossRefGoogle ScholarPubMed
Posada, F. and Vega, F.E. 2005. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 97: 11951200. https://doi.org/10.3852/mycologia.97.6.1195.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Landa, B., Muñoz-Ledesma, J., Jiménez-Diáz, R., and Santiago-Alvarez, C. 2006. Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161: 323329. https://doi.org/10.1007/s11046-006-0014-0.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Munoz-Ledesma, F., and Santiago-Alvarez, C. 2009. Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environmental Entomology, 38: 723730. https://doi.org/10.1603/022.038.0324.CrossRefGoogle ScholarPubMed
Reddy, G.V.P., Zhao, Z., and Humber, R.A. 2014. Laboratory and field efficacy of entomopathogenic fungi for the management of the sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology, 122: 1015. https://doi.org/10.1016/j.jip.2014.07.009.CrossRefGoogle ScholarPubMed
Reddy, N.P., Khan, A.P.A., Devi, U.K., Sharma, H.C., and Reineke, A. 2009. Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae). Journal of Asia Pacific Entomology, 12: 221226. https://doi.org/10.1016/j.aspen.2009.06.001.CrossRefGoogle Scholar
Renuka, S., Ramanujam, B., and Poornesha, B. 2016. Endophytic ability of different isolates of entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin in stem and leaf tissues of maize (Zea mays L.). Indian Journal of Microbiology, 56: 126133. https://doi.org/10.1007/s12088-016-0574-8.CrossRefGoogle ScholarPubMed
Rondot, Y. and Reineke, A. 2018. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control, 116: 8289. https://doi.org/10.1016/j.biocontrol.2016.10.006.CrossRefGoogle Scholar
Rondot, Y. and Reineke, A. 2019. Endophytic Beauveria bassiana activates expression of defence genes in grapevine and prevents infections by grapevine downy mildew Plasmopara viticola . Plant Pathology, 68: 17191731.CrossRefGoogle Scholar
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences, 81: 80148018. https://doi.org/10.1073/pnas.81.24.8014.CrossRefGoogle Scholar
Sánchez-Rodríguez, A.R., Raya-Cíaz, S., María, Á., García-Mina, J.M., Carmen, M., and Quesada-Moraga, E. 2018. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control, 116: 90102. https://doi.org/10.1016/j.biocontrol.2017.01.012.CrossRefGoogle Scholar
Seyedtalebi, F.S., Safavi, S.A., Talaei-Hassanloui, R., and Bandani, A.R. 2017. Quantitative comparison for some immune responses among Eurygaster integriceps, Ephestia kuehniella and Zophobas morio against the entomopathogenic fungus Beauveria bassiana . Invertebrate Survival Journal, 14: 174181. https://doi.org/10.25431/1824-307X/isj.v14i1.174-181.Google Scholar
Seyedtalebi, F.S., Safavi, S.A., Talaei-Hassanloui, R., and Bandani, A.R. 2020. Variable induction of cuticle-degrading enzymes of Beauveria bassiana isolates in the presence of different insect cuticles. Journal of Crop Protection, 9: 563576. http://dorl.net/dor/20.1001.1.22519041.2020.9.4.13.6.Google Scholar
Shrivastava, G., Ownley, B.H., Augé, R.M., Toler, H., Dee, M., Vu, A., et al. 2015. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis, 65: 6574. https://doi.org/10.1007/s13199-015-0319-1.CrossRefGoogle Scholar
Talaei-Hassanloui, R., Kharazi-Pakdel, A., and Hedjaroude, G.A. 2009. Transmission possibility of the fungus Beauveria bassiana KCF102 by mating behavior between Sunn pest, Eurygaster integriceps (Hem.: Scutelleridae) adults. Journal of Entomological Society of Iran, 28: 16.Google Scholar
Tall, S. and Meyling, N.V. 2018. Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbial Ecology, 76: 10021008. https://doi.org/10.1007/s00248-018-1180-6.CrossRefGoogle ScholarPubMed
Tefera, T. and Vidal, S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl, 54: 663669. https://doi.org/10.1007/s10526-009-9216-y.CrossRefGoogle Scholar
Vega, F.E. 2008. Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98: 277279. https://doi.org/10.1016/j.jip.2008.01.008.CrossRefGoogle ScholarPubMed
Vega, F. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia, 110: 430. https://doi.org/10.1080/00275514.2017.1418578.CrossRefGoogle ScholarPubMed
Vega, F.E., Goettel, M.S., Blackwell, M., Chandler, D., Jackson, M.A., Keller, S., et al. 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecology 2: 149159. https://doi.org/10.1016/j.funeco.2009.05.001.CrossRefGoogle Scholar
Wagner, B.L. and Lewis, L.C. 2000. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana . Applied and Environmental Microbiology, 66: 34683473. https://doi.org/10.1128/AEM.66.8.3468-3473.2000.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Part three: genetics and evolution. Academic Press, Cambridge, Massachusetts, United States of America. Pp. 315322.Google Scholar
Wilson, D. 1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73: 274276. https://doi.org/10.2307/3545919.CrossRefGoogle Scholar
Yan, J.F., Broughton, S.J., Yang, S.L., and Gange, A.C. 2015. Do endophytic fungi grow through their hosts systemically? Fungal Ecology, 13: 5359. https://doi.org/10.1016/j.funeco.2014.07.005.CrossRefGoogle Scholar
Yuan, Y., Feng, H., Wang, L., Li, Z., Shi, Y., Zhao, L., et al. 2017. Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLOS One, 12: e0170557. https://doi.org/10.1371/journal.pone.0170557.CrossRefGoogle ScholarPubMed