Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T00:10:18.878Z Has data issue: false hasContentIssue false

DIFFERENCES IN POSTDIAPAUSE DEVELOPMENT AMONG GEOGRAPHICALLY DISTINCT POPULATIONS OF THE LARCH SAWFLY, PRISTIPHORA ERICHSONII (HYMENOPTERA: TENTHREDINIDAE)

Published online by Cambridge University Press:  31 May 2012

R. J. Heron
Affiliation:
Great Lakes Forest Research Centre, Canadian Forestry Service, Sault Ste. Marie, Ontario

Abstract

Distinct differences were observed in postdiapause development and prolonged diapause of the larch sawfly, Pristiphora erichsonii (Hartig), obtained from the vicinity of Tazin River, Northwest Territories; near Riverton, Manitoba; and near Renovo, Pennsylvania. All populations had been reared under controlled laboratory conditions (21°±0.5 °C, 50±10% relative humidity, and a 15-hr daily photophase) for two or more generations.

After 280 days cold treatment at 3°±1 °C, cocoons were dissected and the number of pronymphs and eonymphs was determined. Insects from each population were then reared at 5°, 10°, and 15 °C. Times to adult emergence, duration of individual stages, and numbers remaining in prolonged diapause at each temperature were determined.

The most significant differences occurred among populations reared at 5 °C. At this temperature, the times to adult emergence and the duration of individual stages of development and the proportions remaining in prolonged diapause or arrested development, increased from northern to southern latitudes. Less significant population differences were noted at 10° and 15° than at 5 °C.

Résumé

Observation de nettes différences dans la croissance après diapause et la diapause prolongée de la Tenthrède du Mélèze, Pristiphora erichsonii (Hartig), obtenue au voisinage de Tazin River (Territoires du Nord-Ouest), près de Riverton (Manitoba) et non loin de Renovo (Pennsylvanie). L’élevage de toutes les populations avait eu lieu sous des conditions expérimentales déterminées (21±0.5 °C, 50±10% d’humidité et photophase de 15 heures par jour) pendant deux générations ou plus.Dissection des cocons après traitement à froid de 280 jours à 3±1 °C, et dénombrement des pronymphes et des éonymphes. Puis élevage des insectes provenant de chaque population, sous 5, 10 et 15 °C. Détermination des délais respectifs pour l’émergence des adultes, de la durée des diverses phases de croissance et des chiffres de sujets restant en diapause prolongée à chacune de ces températures.

Observation des principales différences parmi les populations élevées sous 5 °C. A cette dernière température les délais pour l’émergence des adultes, la durée des diverses phases de croissance et les proportions de sujets restant en diapause prolongée ou en état de croissance arrêtée, augmentaient des latitudes nord aux latitudes sud. Relevé de différences moins importantes à 10 et 15 °C qu’à 5 °C.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1941. Climate and man. Yb. Agric. U.S. Dep. Agric., Washington, D.C.Google Scholar
Boughner, C. C. 1964. Canadian Meteorological Memoirs No. 17. The distribution of growing degree days in Canada. Meteorological Branch, Dep. of Transport.Google Scholar
Church, C. C. 1955. Hormones and the termination and reinduction of diapause in Cephus cinctus Nort. (Hymenoptera: Cephidae). Can. J. Zool. 33: 339369.CrossRefGoogle Scholar
Dobzhansky, T. 1941. Genetics and the origin of species. 2nd ed. Columbia University Press, New York, N.Y.Google Scholar
Drooz, A. T. 1959. Pennsylvania Forest Pest Report. Pa. Dep. Forests and Waters, Harrisburg.Google Scholar
Drooz, A. T. 1960. The larch sawfly, its biology and control. Tech. Bull. U.S. Dep. Agric., No. 1212.Google Scholar
Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11: 142.CrossRefGoogle Scholar
Goldschmidt, R. 1934. Lymantria. Bibliogr. Genetica 11: 1186.Google Scholar
Heron, R. J. and Drouin, J. A.. 1969. Methods of collecting, rearing and handling the larch sawfly for experimental studies. Forest Research Laboratory, Winnipeg, Man., Information Rep. MS-X-15.Google Scholar
Kramer, C. Y. 1956. Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12: 307310.CrossRefGoogle Scholar
Sullivan, C. R. and Wallace, D. R.. 1967. Interaction of temperature and photoperiod in the induction of prolonged diapause in Neodiprion sertifer. Can. Ent. 99: 834850.CrossRefGoogle Scholar
Turnock, W. J. and McLeod, B. B.. 1966. The larch sawfly in the northern transitional forest in Central Canada. Proc. ent. Soc. Man. 22: 5560.Google Scholar
Webb, F. E. and Drooz, A. T.. 1967. Larch sawfly, Pristiphora erichsonii (Htg.), pp. 157161. In Davidson, A. G. and Prentice, R. M. (Eds.), Important forest insects and diseases of mutual concern to Canada, the United States and Mexico. Can. Dep. For. Rural Develop., Ottawa.Google Scholar
Weir, T. R. 1967. Economic atlas of Manitoba. Manitoba Dep. Resources and Economic Development, Winnipeg.Google Scholar
Wigglesworth, V. B. 1964. The hormonal regulation of growth and reproduction in insects, pp. 247336. In Beament, J. W. L., Treherne, J. E., and Wigglesworth, V. B. (Eds.), Advances in insect physiology. Vol. 2. Academic Press, London and New York.Google Scholar