Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T23:57:37.212Z Has data issue: false hasContentIssue false

EFFICACY AND FIELD PERSISTENCE OF BACILLUS THURINGIENSIS AFTER GROUND APPLICATION TO BALSAM FIR AND WHITE SPRUCE IN WISCONSIN

Published online by Cambridge University Press:  31 May 2012

R. C. Reardon
Affiliation:
Pacific Southwest Forest and Range Experiment Station, Forest Service, USDA, Davis, California 95616
K. Haissig
Affiliation:
Wisconsin Department of Natural Resources, Rhinelander, Wisconsin 54409
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bacillus thuringiensis was applied at three dosages (1.0 BIU/tree, 0.1 BIU/tree, and.01 BIU/tree) to balsam fir, Abies balsamea (L.) Mill., and white spruce, Picea glauca (Moench) Voss, with mist blowers. Crystalline proteins were detected on balsam fir foliage for a maximum of 16 days (d) after B. thuringiensis was applied at 1.0 BIU/tree. Higher levels of crystalline proteins were detected on white spruce foliage treated with Thuricide 16B than on that treated with Dipel 4L. On balsam fir, the situation was the opposite. Mist-blower-treated foliage collected for up to 16 d posttreatment caused mortality of spruce budworm, Choristoneura fumiferana (Clemens), larvae. Viable endospores of B. thuringiensis were recovered on white spruce foliage collected 1 year after treatment.

Résumé

Bacillus thuringiensis a été appliqué à 3 doses (1.0 BIU/arbre; 0.1 BIU/arbre et.01 BIU/arbre) sur le sapin, Abies balsamea (L.) Mill., et l'épinette blanche, Picea glauca (Moench) Voss, à l'aide de brumisateurs. Les cristaux protéiques ont été détectés sur le feuillage pendant 16 jours (d) au maximum après l'application de 1.0 BIU/arbre. Des niveaux plus élevés de cristaux protéiques ont été détectés sur le feuillage de l'épinette blanche traité au Thuricide 16B que sur celui traité au Dipel 4L. Sur le sapin baumier, la situation inverse s'est présentée. Du feuillage traité au brumisateur et prélevé jusqu'à 16 jours après le traitement a causé de la mortalité chez des larves de tordeuse, Choristoneura fumiferana (Clemens). Des endospores viables de B. thuringiensis ont été trouvées sur du feuillage d'épinette blanche prélevé 1 an après le traitement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

References

Benz, G. and Borusiewicz, K.. 1963. A method for the differential staining of spores and parasporal bodies of Bacillus thuringiensis Berliner, and Bacillus fribourgensis Wille. J. Insect Path. 5: 393394.Google Scholar
Hammock, B. 1980. Development of an enzyme-linked immunosorbent assay (ELISA) for Bt for use in the control of spruce budworm. Study plan on file Univ. of California, Dept. of Ent., Davis.Google Scholar
Harper, J. D. 1974. Forest Insect Control with Bacillus thuringiensis Survey of Current Knowledge. Auburn Univ. Press. 64 pp.Google Scholar
Leong, K. L. H., Cano, R. J., and Kubinski, A. M.. 1980. Factors affecting Bacillus thuringiensis total field persistence. Environ. Ent. 9: 593599.CrossRefGoogle Scholar
Morris, O. N. 1980. Report of the 1979 CANUSA cooperative Bacillus thuringiensis Bt spray trials. For. Pest Mgmt Inst. Rep. FPM-X-40. 75 pp.Google Scholar
Morris, O. N. 1981. Report of the 1980 Cooperative Bacillus thuringiensis (B.t.) spray trials. For. Pest Mgmt Inst. Rep. FPM-X-48. 74 pp.Google Scholar
Pinnock, D. E., Brand, R. J., and Milstead, J. E.. 1971. The field persistence of Bacillus thuringiensis spores. J. invert Path. 18: 405411.CrossRefGoogle Scholar
Reardon, R. C. and Haissig, K.. 1983. Spruce budworm (Lepidoptera: Tortricidae) larval populations and field persistence of Bacillus thuringiensis after treatment in Wisconsin. J. econ Ent. 76: 11391143.CrossRefGoogle Scholar
Reardon, R. C. et al. 1982. Efficacy of two formulations of Bacillus thuringiensis on populations of spruce budworm on balsam fir in Wisconsin. J. econ. Ent. 75: 509514.CrossRefGoogle Scholar
Voller, A., Bidwell, D. E., and Bartlett, A.. 1980. Enzyme-linked immunosorbent assay. pp. 359371in Rose, N. R. and Friedman, H. (Ed.), Manual of Clinical Immunology. American Society for Microbiology, Washington, D.C.Google Scholar
Wie, S. I. et al. 1982. Enzyme-linked immunosorbent assay for detection and quantitation of the entomocidal parasporal crystalline protein of Bacillus thuringiensis subspp. kurstaki and israelensis. Appl. environ. Microbiol. 43: 891894.CrossRefGoogle ScholarPubMed
Wie, S. I., Gill, S. S., and Hammock, B. D.. A single enzyme immunoassay for detection of entomocidal parasporal crystalline proteins of Bacillus thuringiensis. Appl. environ. Microbiol. (in press).Google Scholar
Yamvrias, C. and Angus, T. A.. 1969. The comparative pathogenicity of some Bacillus thuringiensis varieties for larvae of the spruce budworm. J. invert. Path. 15: 9299.CrossRefGoogle Scholar