Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T10:50:13.825Z Has data issue: false hasContentIssue false

ENANTIOMERIC COMPOSITION AND RELEASE RATES OF exo-BREVICOMIN INFLUENCE AGGREGATION OF THE WESTERN BALSAM BARK BEETLE, DRYOCOETES CONFUSUS SWAINE (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

Arthur J. Stock
Affiliation:
British Columbia Ministry of Forests, 518 Lake Street, Nelson, British Columbia, Canada V1L 4P6
J.H. Borden
Affiliation:
British Columbia Ministry of Forests, 518 Lake Street, Nelson, British Columbia, Canada V1L 4P6
T.L. Pratt
Affiliation:
British Columbia Ministry of Forests, 518 Lake Street, Nelson, British Columbia, Canada V1L 4P6
H.D. Pierce Jr.
Affiliation:
British Columbia Ministry of Forests, 518 Lake Street, Nelson, British Columbia, Canada V1L 4P6
B.D. Johnston
Affiliation:
British Columbia Ministry of Forests, 518 Lake Street, Nelson, British Columbia, Canada V1L 4P6

Abstract

Field experiments demonstrated that the western balsam bark beetle, Dryocoetes confusus, responded best to multiple-funnel traps baited with mixtures of (+)- and (−)-exo-brevicomin. (±)-exo-Brevicomin released at 0.8 mg per 24 h performed as well as or better than release rates of from 0.2 to 1.0 mg per 24 h in terms of the number of baited trees which were mass attacked (80%), average attack density, and average number of trees attacked within a 10-m radius of baited trees. Baiting more than one tree in a spot resulted in an intensification of attack on baited trees and increased the number of trees attacked within 10 m of each spot.

Résumé

Des Scolytes du sapin de l’ouest, Dryocoetes confusus, ont été mis en présence de pièges à plusieurs entrées, en nature, et ce sont les entrées garnies de mélanges de brévicomine-(+) et (−) qui les attiraient le plus. La libération du produit à raison de 0,8 mg par 24 h donne des résultats équivalents ou supérieurs à des taux de libération de 0,2 à 1,0 mg par 24 h, puisque c’est à ce taux que le nombre d’arbres garnis envahis par des masses d’insectes est le plus élevé (80%), que la densité moyenne des insectes envahisseurs est le plus grande et que le nombre moyen d’arbres attaqués dans un rayon de 10 m des arbres garnies est le plus élevé. En garnissant plus d’un arbre en un point, on peut augmenter la fréquence des attaques sur les arbres garnis et augmenter le nombre d’arbres attaqués dans un rayon de 10 m de chaque point.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borden, J.H. 1982. Aggregation pheromones. pp. 74–139 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers: A System for the Study of Evolutionary Biology. University of Texas Press, Austin, TX. 527 pp.Google Scholar
Borden, J.H., Chong, L., McLean, J.A., Slessor, K.N., and Mori, K.. 1976. Gnathotricus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192: 894896.CrossRefGoogle ScholarPubMed
Borden, J.H., Chong, L.J., Pratt, K.E.G., and Gray, D.R.. 1983. The application of behaviour modifying chemicals to contain infestations of the mountain pine beetle, Dendroctonus ponderosae. Forestry Chronicle 59: 235239.CrossRefGoogle Scholar
Borden, J.H., Handley, J.R., McLean, J.A., Silverstein, R.M., Chong, L., Slessor, K.N., Johnston, B.D., and Schuler, H.R.. 1980. Enantiomer-based specificity in pheromone communication by two sympatric Gnathotricus species (Coleoptera: Scolytidae). Journal of Chemical Ecology 6: 445456.CrossRefGoogle Scholar
Borden, J.H., Pierce, A.M., Pierce, H.D. Jr., Chong, L.H., Stock, A.J., and Oehlschlager, A.C.. 1987. Semiochemicals produced by the western balsam bark beetle, Dryocoetes confusus Swaine (Coleoptera: Scolytidae). Journal of Chemical Ecology 13: 823836.CrossRefGoogle ScholarPubMed
Borden, J.H., Ryker, L.C., Chong, L.J., Pierce, H.D. Jr., Johnston, B.D., and Oehlschlager, A.C.. 1987. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Journal of Chemical Ecology 13: 823836.CrossRefGoogle Scholar
Bright, D.R. Jr., 1963. Bark beetles of the genus Dryocoetes (Coleoptera: Scolytidae) in North America. Annals of the Entomological Society of America 56: 103115.CrossRefGoogle Scholar
Conn, J.E., Borden, J.H., Scott, B.E., Friskie, L.M., Pierce, H.D. Jr., and Oehlschlager, A.C.. 1983. Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae), in British Columbia: Field trapping studies. Canadian Journal of Forest Research 13: 320324.CrossRefGoogle Scholar
Furniss, M.M., Baker, B.H., and Hostetler, B.B.. 1976. Aggregation of spruce beetle (Coleoptera: Scolytidae) to suedenol, and repression of attraction by methylcyclohexenone in Alaska. The Canadian Entomologist 108: 12971302.CrossRefGoogle Scholar
Johnston, B.D., and Oehlschlager, A.C.. 1982. Facile synthesis of enantiomers of exo-brevicomin. Journal of Chemical Ecology 47: 53845386.Google Scholar
Kohnle, U. 1985. Untersuchungen über die Pheromonststeme sekundärer Borkenkäfer (Col., Scolytidae). Zeitschrift für angewandte Entomologie 100: 197218.CrossRefGoogle Scholar
Kohnle, U., and Vité, J.P.. 1984. Bicyclic ketals in the chemical communication of European bark beetles. Naturwissenschaften 71: 47.CrossRefGoogle Scholar
Lanier, G.N. 1972. Biosystematics of the genus Ips (Coleoptera: Scolytidae) in North America. Hopping's groups IV and X. The Canadian Entomologist 104: 361388.CrossRefGoogle Scholar
Lanier, G.N., Classon, A., Stewart, T., Piston, J.J., and Silverstein, R.M.. 1980. Ips pini: The basis for interpopulational differences in pheromone biology. Journal of Chemical Ecology 6: 677687.CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple-funnel trap for scolytid beetles. The Canadian Entomologist 115: 299302.CrossRefGoogle Scholar
Millar, J.G., Pierce, H.D. Jr., Pierce, A.M., Oehlschlager, A.C., and Borden, J.H.. 1985. Aggregation of the grain beetle, Cryptolestes turcicus (Coleoptera: Cucujidae). Journal of Chemical Ecology 11: 10711081.CrossRefGoogle ScholarPubMed
Miller, D.R., Borden, J.H., and Slessor, K.N.. 1989. Inter- and intra-population variation of the pheromone ipsdienol produced by male pine engravers, Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology 15: 233247.CrossRefGoogle Scholar
Mulock, P., and Christiansen, E.. 1986. The threshold of successful attack by Ips typographus on Picea abies: A field experiment. Forest Ecology and Management 14: 125132.CrossRefGoogle Scholar
Nilssen, A.C. 1979. Taxonomic status of Dryocoetes autographus Ratz. and D. hectographus Reitt. (Coleoptera: Scolytidae). Entomologica Scandinavia 10: 219228.CrossRefGoogle Scholar
Number Cruncher Statistical System. 1988. Kaysville, Utah, USA.Google Scholar
Payne, T.L., Richerson, J.V., Dickens, J.C., West, J.R., Mori, K., Berrisford, C.W., Hedden, R.L., Vité, J.P., and Blum, M.S.. 1982. Southern pine beetle: Olfactory receptor and behaviour discrimination of enantiomers of the attractant pheromone frontalin. Journal of Chemical Ecology 8: 873881.CrossRefGoogle ScholarPubMed
Schlyter, F., Byers, J.A., and Löfqvist, J.. 1987. Attraction to pheromone sources of different quantity, quality, and spacing: Density-regulation mechanisms in bark beetle Ips typographus. Journal of Chemical Ecology 13: 15031523.CrossRefGoogle Scholar
Schurig, V., Weber, R., Nicholson, G.J., Oehlschlager, A.C., Pierce, H.D. Jr., Pierce, A.M., Borden, J.H., and Ryker, L.C.. 1983. Enantiomer composition of natural exo- and endo-brevicomin by complexation gas chromatography/selected ion mass spectrometry. Naturwissenschaften 70: 9293.CrossRefGoogle Scholar
Silverstein, R.M. 1988. Chirality in insect communication. Journal of Chemical Ecology 14: 19812004.CrossRefGoogle ScholarPubMed
Slessor, K.N., Kaminski, L.A., King, C.G.S., Borden, J.H., and Winston, M.L.. 1988. Semiochemical basis of the retinue response to queen honey bees. Nature 332: 354356.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. W.H. Freeman and Co., San Francisco, CA. 859 pp.Google Scholar
Stock, A.J. 1981. The Western Balsam Bark Beetle, Dryocoetes confusus Swaine: Secondary Attraction and Biological Notes. M.Sc thesis, Simon Fraser University, Burnaby, B.C.63 pp.Google Scholar
Stock, A.J., and Borden, J.H.. 1983. Secondary attraction in the western balsam bark beetle, Dryocoetes confusus (Coleoptera: Scolytidae). The Canadian Entomologist 115: 539550.CrossRefGoogle Scholar
Tumlinson, J.H. 1988. Contemporary frontiers in insect semiochemical research. Journal of Chemical Ecology 14: 21092130.CrossRefGoogle ScholarPubMed
Zar, J.H. 1984. Biostatistical Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar