Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:06:13.529Z Has data issue: false hasContentIssue false

EVALUATION OF A HELD BIOASSAY TECHNIQUE TO PREDICT THE IMPACT OF AERIAL APPLICATIONS OF FORESTRY INSECTICIDES ON STREAM INVERTEBRATES

Published online by Cambridge University Press:  31 May 2012

D.G. Poirier
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
G.A. Surgeoner
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Field bioassays were used to assess the toxicities of four formulated insecticides to representative stream invertebrates. Toxicities (48-h LC50) after a 1-h application period ranged from 2.0 to 7.1 μg/L for permethrin, 82 to 284 μg/L for fenitrothion, 344 to 1276 μg/L for aminocarb, and 251 to 1504 μg/L for mexacarbate. Invertebrates drifted at concentrations of permethrin greater than 0.5 μg/L, and at concentrations of fenitrothion, aminocarb, and mexacarbate greater than 10 μg/L. An aerial application of 280 g AI/ha fenitrothion with no stream buffer was made to compare bioassay results with impact to aquatic invertebrates under operational spray programs. Concentrations of fenitrothion peaked 30 min after spray at 31.0 μg/L and declined to less than 1.0 μg/L within 14 h. Numbers of drifting invertebrates increased 20-fold 3 h after spray and declined to before-spray numbers within 24 h. Mortalities of caged invertebrates in the stream ranged from 0% for Pycnopsyche sp. to 16% for Simulium venustum (Say). The field bioassay accurately predicted the impacts of fenitrothion on stream invertebrates in this situation.

Résumé

Des essais sur le terrain ont permis de tester la toxicité de quatre formules insecticides pour des invertébrés typiques des ruisseaux. La toxicité (LC50, à 48 h) suite à une application de 1 h a varié de 2,0 à 7,1 μg/L pour la perméfhrine, de 82 à 284 μg/L pour le fenitrothion, de 344 à 1276 μg/L pour l’aminocarbe et 251 à 1504 μg/L pour le mexacarbate. Les invertébrés dérivaient aux concentrations de perméthrine supérieures à 0,5 μg/L et aux concentrations de fenitrothion, d’aminocarbe et de mexacarbate supérieures à 10 μg/L. Une application aérienne à 280 g IA/ha de fenitrothion sans tampon a été effectuée pour fins de comparaison des résultats avec l’impact des programmes opérationnels de traitement. La concentration de fenitrothion a atteint son maximum à 31,0 μg/L 30 min après le traitement et avait baissé à moins de 1,0 μg/L 14 h après. La densité des invertébrés en dérive a augmenté de 20 fois dans les 3 h suivant le traitement et avait repris sa valeur initiale après 24 h. La mortalité d’invertébrés encagés dans le ruisseau a varié de 0% pour Pycnopsyche sp. jusqu’à 16% pour Simulium venustum (Say). Le test a permis de prédire avec précision les effets du fenitrothion sur les invertébrés aquatiques dans cette situation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coady, L.W. 1978. Immediate chemical and toxicological influences of aerially applied fenitrothion and aminocarb in selected Newfoundland streams. Environmental Protection Serv. Serveillance Rep. No. EPS-5-AR-78-1. Dartmouth. 84 pp.Google Scholar
Dimond, J.B., Malcolm, S.E., and Van Derwerker, G.K.. 1972. Zectran and aquatic insects: comparisons with other insecticides. Environ. Ent. 1: 459464.Google Scholar
Eidt, D.C. 1975. The effects of fenitrothion from large scale forest spraying on benthos in New Brunswick headwaters streams. Can. Ent. 107: 743760.CrossRefGoogle Scholar
Eidt, D.C. 1978. Toxicity of fenitrothion to insects in a woodland stream. Maritime Forest Res. Centre Rep. No. M-X-86. 13 pp.Google Scholar
Environmental Monitoring Committee. 1979 a. 1977 environmental monitoring of the spruce budworm spray programs in Newfoundland. Nfld. Dept. Consumer Affairs and Environment Info. Report No. RA-79-1. St. John's.Google Scholar
Environmental Monitoring Committee. 1979 b. 1978 environmental monitoring of the spruce budworm spray programs in Newfoundland. Nfld. Dept. Consumer Affairs and Environment Info. Report No. RA-79-2. St. John's.Google Scholar
Gaugler, R., and Molloy, D.. 1980. Feeding inhibition in blackfly larvae (Diptera: Simuliidae) and its effects on the pathogenicity of Bacillus thuringiensis var. israeliensis. Environ. Ent. 9: 704708.Google Scholar
Holmes, S.B. 1979. Aquatic impact studies of a spruce budworm (Choristoneura fumiferana Clemens) control program in the lower St. Lawrence region of Quebec in 1978. Forest Pest Manag. Inst. Rep. No. FPM-X-59. Sault Ste. Marie. 34 pp.Google Scholar
Hubert, J.J. 1984. Bioassay. Kendall/Hunt Publ. Co., Toronto. 164 pp.Google Scholar
Hynes, H.B.N. 1970. The Ecology of Running Waters. University of Toronto Press, Toronto. 555 pp.Google Scholar
Johnson, W.W., and Finley, M.T.. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. U.S. Fish Wildlife Serv. Research Publ. No. 137. 98 pp.Google Scholar
Kingsbury, P.D., and Kreutzweiser, D.P.. 1979. Impact of double applications of permethrin on streams and ponds. Forest Pest Manag. Inst. Rep. No. FPM-X-27. Sault Ste. Marie. 42 pp.Google Scholar
Kingsbury, P.D., and Kreutzweiser, D.P.. 1980 a. Environmental impact assessment of semioperational permethrin applications. Forest Pest Manag. Inst. Rep. No. FPM-X-30. Sault Ste. Marie. 47 pp.Google Scholar
Kingsbury, P.D., and Kreutzweiser, D.P.. 1980 b. Dosage-effect studies on the impact of permethrin on trout streams. Forest Pest Manag. Inst. Rep. No. FPM-X-31. Sault Ste. Marie. 51 pp.Google Scholar
Kreutzweiser, D.P. 1982. The effects of permethrin on the invertebrate fauna of a Quebec forest. Forest Pest Manag. Inst. Rep. No. FPM-X-50. Sault Ste. Marie. 45 pp.Google Scholar
MacDonald, J.R., and Penny, G.H.. 1967. Preliminary report on the effects of the 1967 New Brunswick forest spraying on juvenile salmon and their food organisms. Resources Develop. Branch, Dept. Fisheries Canada. Halifax. 47 pp.Google Scholar
McEwen, F.L., and Stephenson, G.R.. 1979. The Use and Significance of Pesticides in the Environment. John Wiley and Sons, Inc., Toronto. 538 pp.Google Scholar
Morin, R., Gaboury, G., and Mamarbachi, G.. 1986. Fenitrothion and aminocarb residues in water and balsam fir foliage following spruce budworm spraying programs in Quebec, 1979 to 1982. Bull. Environ. Contam. Toxicol. 36: 622628.Google Scholar
Muirhead-Thomson, R.C. 1978. Lethal and behavioral impacts of permethrin (NRDC-143) on selected stream macroinvertebrates. Mosq. News 38: 829837.Google Scholar
National Research Council of Canada. 1977. Fenitrothion: long term effects of its use in forest ecosystems. Associate Committee on Scientific Criteria for Environmental Quality Publ. No. 16073. Ottawa. 628 pp.Google Scholar
National Research Council of Canada. 1982. Aminocarb: the effects of its use on the forest and the human environment. Associate Committee on Scientific Criteria for Environmental Quality Publ. No. 18979. Ottawa. 253 pp.Google Scholar
National Research Council of Canada. 1986. Pyrethroids: their effects on aquatic and terrestrial ecosystems. Associate Committee on Scientific Criteria for Environmental Quality Publ. No. 24376. Ottawa. 303 pp.Google Scholar
Poirier, D.G., and Surgeoner, G.A.. 1987. Laboratory flow-through bioassays of four forestry insecticides against stream macroinvertebrates. Can. Ent. 119: 755763.Google Scholar
Schmitt, D.M., Grimble, D.G., and Searcy, J.L.. 1984. Spruce budworms handbook: managing the spruce budworm in eastern North America. CANUSA, USDA Forestry Serv. Handbook No. 620. 192 pp.Google Scholar
Schwenneker, B.W., and Hellenthal, R.A.. 1984. Sampling considerations in using stream insects for monitoring water quality. Environ. Ent. 13: 741750.Google Scholar
Sprague, J.B., and Fogels, A.. 1977. Watch the Y in bioassay. Environmental Protection Service Tech. Report No. EPS-5-AR-77-1. pp. 107118.Google Scholar
Steel, R.G.D., and Torrie, J.H.. 1980. Principles and Procedures in Statistics. A Biometrical Approach. McGraw-Hill, Toronto. 633 pp.Google Scholar
Sundaram, K.M.S., Nott, R., Holmes, S., and Boyonoski, N.. 1986. The distribution and fate of mexacarbate in a forest aquatic ecosystem. Forest Pest Manag. Inst. Rep. No. FPM-X-73. Sault Ste. Marie.Google Scholar
Travis, B.V., and Schuchman, S.M.. 1968. Tests (1967) with black fly larvicides. J. econ. Ent. 61: 843845.Google Scholar
Varty, I.W. 1978. 1977 environmental surveillance of insecticide spray operations in New Brunswick's budworm infested forests. Maritime Forest Res. Centre Rep. No. M-X-87. Fredericton. 24 pp.Google Scholar
Wildish, D.J., and Phillips, R.L.. 1972. Acute lethality of fenitrothion to freshwater aquatic invertebrates. Fish. Res. Board Canada M.S. Rep. No. 2010. 10 pp.Google Scholar
Woodward, D.F., and Mauck, W.L.. 1980. Toxicity of five forest insecticides to cutthroat trout and two species of aquatic invertebrates. Bull. Environ. Contam. Toxicol. 25: 846853.CrossRefGoogle ScholarPubMed