Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:18:31.120Z Has data issue: false hasContentIssue false

INFLUENCE OF TEMPERATURE ON SURVIVAL AND RATE OF DEVELOPMENT OF PTEROMALUS VENUSTUS (HYMENOPTERA: PTEROMALIDAE), A PARASITE OF THE ALFALFA LEAFCUTTER BEE (HYMENOPTERA: MEGACHILIDAE)

Published online by Cambridge University Press:  31 May 2012

G.H. Whitfield
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, Canada T1J 4B1
K.W. Richards
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, Canada T1J 4B1

Abstract

Incidence of parasitism by Pteromalus venustus Walker in populations of the alfalfa leafcutter bee, Megachile rotundata (F.), in western Canada from 1976 to 1983 was found to average ca. 1%. An average of 17.4 parasite adults emerged from each host cocoon and the ratio of males to females was 1:1. Temperature-dependent development and survival at 8 constant temperatures are described. The range of temperatures for greatest survival of the parasite (30–32 °C) coincided with the recommended incubation temperatures for cocoons of the leafcutter bee. Development data fitted a 4-parameter development model. Linear regression of development rate versus temperature provided estimates of base temperature and development time in degree-days for the egg, larval, pupal, and combined stages.

Résumé

On a trouvé que l'incidence du parasitisme des populations de l'abeille découpeuse de la luzerne, Megachile rotundata (F.), par Pteromalus venustus Walker dans l'ouest canadien de 1976 à 1983 était de 1% en moyenne. En moyenne, 17,4 parasites adultes ont émergé de chaque cocon de l'hôte, dans un rapport mâle : femelle de 1 : 1. On décrit la réponse du développement et la survie à 8 température constantes. L'écart des températures les plus favorables à la survie du parasite (30–32 °C) coïncide avec les températures recommandées pour l'incubation des oeufs de l'abeille découpeuse. Les données de la réponse du développement ont été ajustées à un modèle à 4 paramètres. Une régression linéaire du taux de développement en fonction de la température a fourni des estimés du seuil thermique et du temps physiologique de développement en degrés-jours pour les stades oeuf, larve, pupe et pour leur ensemble.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Am. Soc. hort. Sci. 74: 430445.Google Scholar
Bohart, G.E. 1972. Management of wild bees for the pollination of crops. A. Rev. Ent. 17: 287312.CrossRefGoogle Scholar
Brindley, W.A. 1976. Carbaryl control of chalcidoid parasites from alfalfa leafcutting bees. J. econ. Ent. 69: 225228.CrossRefGoogle Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and MacKauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Biol. 11: 431438.Google Scholar
Eves, J.D., Mayer, D.F., and Johansen, C.A.. 1980. Parasites, predators, and nest destroyers of the Alfalfa Leafcutting Bee, Megachile rotundata. Coop. Ext. Serv., Wash. State Univ. WREP 32. 15 pp.Google Scholar
Hill, B.D., Richards, K.W., and Schaalje, G.B.. 1984. Use of dichlorvos resin strips to reduce parasitism of alfalfa leafcutter bee (Hymenoptera: Megachilidae) cocoons during incubation. J. econ. Ent. 77: 13071312.CrossRefGoogle Scholar
Hobbs, G.A. 1968. Controlling insect enemies of the alfalfa leaf-cutter bee, Megachile rotundata. Can. Ent. 100: 781784.Google Scholar
Hobbs, G.A., and Krunić, M.D.. 1971. Comparative behavior of three chalcidoid (Hymenoptera) parasites of the alfalfa leafcutter bee, Megachile rotundata, in the laboratory. Can. Ent. 103: 674685.CrossRefGoogle Scholar
Hobbs, G.A., and Richards, K.W.. 1977. An examination of methods used in western Canada to estimate populations of alfalfa leafcutter bees. Bee World 58: 6770.CrossRefGoogle Scholar
Krunić, M.D., and Hinks, C.F.. 1972. The effect of temperature and of temperature pretreatment on diapause and on the synchronization of adult emergence in Megachile rotundata (Hymenoptera: Megachilidae). Can. Ent. 104: 889893.Google Scholar
Parker, F.D. 1979. Alfalfa leafcutter bee — reducing parasitism of loose cells during incubation (Hymenoptera: Megachilidae). Pan-Pacific Ent. 55: 9094.Google Scholar
Richards, K.W. 1984. Alfalfa leafcutter bee management in western Canada. Agric. Can. Publ. 1495 (revised). 56 pp.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. theor. Biol. 88: 719731.Google Scholar
Sharpe, P.J.H., and De Michele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Carlson, R.N.. 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. ent. Soc. Am. 77: 208225.CrossRefGoogle Scholar