Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:37:11.399Z Has data issue: false hasContentIssue false

INVITATION PAPER (C.P. ALEXANDER FUND): HISTORY OF BACILLUS THURINGIENSIS BERLINER RESEARCH AND DEVELOPMENT

Published online by Cambridge University Press:  31 May 2012

Clayton C. Beegle
Affiliation:
U.S. Environmental Protection Agency, OPP/EFGWB H7507C, 401 M St. S.W., Washington, DC, USA20460
Takashi Yamamoto
Affiliation:
Sandoz Agro, Inc., 975 California Ave., Palo Alto, California, USA94304–1104

Abstract

This review article starts with the discovery of Bacillus thuringiensis Berliner in Japan at the turn of the century and notes that the observations of the early Japanese workers clearly show that they were aware of the toxin-mediated nature of the activity of B. thuringiensis toward insect larvae. The early work in Europe with B. thuringiensis against Ostrinia nubilalis (Hubner) showed that the bacterium had promise as a microbial control agent. The commercial development of B. thuringiensis in France in the late 1930s, and in Eastern Europe and the United States in the 1950s, is traced.

Résumé

Cet article de synthèse relate l’histoire de Bacillus thuringiensis Berliner depuis sa découverte au Japon au début du siècle et indique que les premiers chercheurs japonais connaissaient déjà les effets toxiques du bacille sur les larves d’insectes. Les premiers travaux européens qui décrivent les effets de B. thuringiensis sur Ostrinia nubilalis (Hubner) ont démontré que la bactérie constituait un agent microbien de contrôle très prometteur. L’historique de la production commerciale de B. thuringiensis, en France à la fin des années 1930 et en Europe de l’Est et aux États-Unis dans les années 1950, est retracée.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adang, M.J., Firoozabady, E.F., Klein, J., DeBoer, D., Sekar, V., Kemp, J.D., Murray, E., Rocheleau, T.A., Rashka, K., Staffeld, G., Stock, C., Sutton, D., and Merlo, D.J.. 1987. Expression of a Bacillus thuringiensis insecticidal crystal protein gene in tobacco plants. pp. 345353in Arntzen, C.J., and Ryan, C. (Eds.), Molecular Strategies for Crop Protection. UCLA Symposium on Molecular and Cellular Biology. New Series. Vol. 46. Alan R. Liss, Inc., New York, NY.Google Scholar
Adang, M.J., Staver, M.J., Rockeleau, T.A., Leighton, J., Barker, R.F., and Thompson, D.V.. 1985. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289300.CrossRefGoogle ScholarPubMed
Affify, A.M., and Merdan, A.I.. 1969. On the response of some Egyptian cotton worms in different larval ages to Bacillus thuringiensis Berliner. Z. agnew. Ent. 63: 263267.Google Scholar
Andrews, R.E. Jr , Iandolo, J.J., Campbell, B.S., Davidson, L.I., and Bulla, L.A. Jr, 1980. Rocket immuno-electrophoresis of the entomocidal parasporal crystal of Bacillus thuringiensis subsp. kurstaki. Appl. Environ. Microbiol. 40: 897900.CrossRefGoogle Scholar
Angus, T.A. 1954. A bacterial toxin paralyzing silkworm larvae. Nature 173: 545546.CrossRefGoogle Scholar
Aoki, K., and Chigasaki, Y.. 1916. Uber die Pathogenitat der sog. Sottobacillen (Ishiwata) bei Seidenraupen. Bull. Imperial. Sericult. Exp. Sta. 1: 97139.Google Scholar
Aronson, A.I., Han, E.-S., McGaughey, W., and Johnson, D.. 1991. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. 57: 981986.CrossRefGoogle ScholarPubMed
Barton, K.A., Whiteley, H.R., and Yang, N.-S.. 1987. Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 11031109.CrossRefGoogle Scholar
Beegle, C.C. 1983. Status of development of superior isolates of Bacillus thuringiensis for use against Heliothis spp. on cotton. pp. 225–227 in Brown, J.M. (Ed.), Proc. Beltwide Cotton Prod. Res. Confer. National Cotton Council of America, Memphis, TN. 347 pp.Google Scholar
Beegle, C.C. 1990. Bioassay methods for quantification of Bacillus thuringiensis delta-endotoxin. pp. 14–21 in Hickle, L.A., and Fitch, W.L. (Eds.), Analytical Chemistry of Bacillus thuringiensis. American Chemical Society, Washington, DC. 148 pp.Google Scholar
Beegle, C.C., Couch, T.L., Alls, R.T., Versoi, P.L., and Lee, B.L.. 1986. Standardization of HD-1-S-1980: U.S. standard for assay of lepidopteraous-active Bacillus thuringiensis. Bull. ent. Soc. Am. 32: 4445.Google Scholar
Beegle, C.C., Lewis, L.C., Lynch, R.E., and Martinez, A.J.. 1981. Interaction of larval age and antibiotic on the susceptibility of three insect species to Bacillus thuringiensis. J. Invertebr. Pathol. 37: 143153.CrossRefGoogle Scholar
Beegle, C.C., Rose, R.I., and Ziniu, Y.. 1991. Mass production of Bacillus thuringiensis and B. sphaericus for microbial control of insect pests. pp. 195–216 in Maramorosch, K. (Ed.), Biotechnology for Biological Control of Pests and Vectors. CRC Press, Boca Raton, FL. 278 pp.Google Scholar
Berliner, E. 1911. Uber die Schalffsucht der Mehlmottentaupe. Z. Gesamte Getreidewes. 3: 6370.Google Scholar
Berliner, E. 1915. Uber die Schalffsucht der Mehlmottentaupe. Z. angew. Ent. 2: 2956.CrossRefGoogle Scholar
Bernhard, K. 1986. Studies on the delta-endotoxin of Bacillus thuringiensis var. tenebrionis. FEMS Microbiol. Lett. 33: 261265.CrossRefGoogle Scholar
Bonnefoi, A., Burgerjon, A., and Grison, P.. 1958. Titrage biologique des preparations de spores de Bacillus thuringiensis Berliner. C. R. Acad. Sci. 247: 14181420.Google ScholarPubMed
Bonnefoi, A., and de Barjac, H.. 1963. Classification des souches du groupe Bacillus thuringiensis par la determination de l'antigene flagellaire. Entomophaga 8: 223229.CrossRefGoogle Scholar
Briggs, J.D. 1986. Pioneering and advanced phases of commercial use of Bacillus thuringiensis in North America. pp. 2535in Kreig, A., and Huger, A.M. (Eds.), Mitt. Biol. Bundesanst. Land Forstwirtsch. Berl. Dahlem. Vol. 233. Paul Parcey, Berlin.Google Scholar
Brizzard, B.L., and Whiteley, H.R.. 1988. Nucleotide sequence of an additional crystal protein gene cloned from Bacillus thuringiensis subsp. thuringiensis. Nucl. Acids Res. 16: 27232724.CrossRefGoogle ScholarPubMed
Brussock, S.M. and Currier, T.C.. 1990. Use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis to quantify Bacillus thuringiensis δ-endotoxin. pp. 78–87 in Hickle, L.A., and Fitch, W.L. (Eds.), Analytical Chemistry of Bacillus thuringiensis. American Chemical Society, Washington, DC. 148 pp.Google Scholar
Bulla, L.A. Jr , Davidson, L.I., Kramer, K.J., and Jones, B.L.. 1979. Purification of the insecticidal toxin from the parasporal crystal of Bacillus thuringiensis subsp. kurstaki. Biochem. Biophys. Res. Commun. 91: 11231130.CrossRefGoogle ScholarPubMed
Burgerjon, A. 1965. Le titrage biologique des cristaux de Bacillus thuringiensis Berliner par reduction de consommation au laboratoire de la miniere. Entomophaga 10: 2126.CrossRefGoogle Scholar
Burgerjon, A., and Biache, G.. 1967. Contribution a l'étude du spectre d'activate de differentes souches de Bacillus thuringiensis. Entomologia exp. appl. 10: 211230.CrossRefGoogle Scholar
Burgerjon, A., and Grison, P.. 1959. Sensibilite de differents lepidopteres a la souche “anduze” de Bacillus thuringiensis Berliner. Entomophaga 4: 201206.CrossRefGoogle Scholar
Burges, H.D. 1967. The standardization of products based on Bacillus thuringiensis. pp. 306314in van der Laan, P.A. (Ed.), Insect Pathology and Microbial Control. North-Holland Publ. Co., Amsterdam. 360 pp.Google Scholar
Burges, H.D. et al. , 1966. Mimeo, report of the Second International Symposium on the Standardization of Bacillus thuringiensis: Suggested Resolutions, Tests, and Principles. Wageningen, Netherlands. 2 pp.Google Scholar
Burges, H.D., Thomson, E.M., and Latchford, R.A.. 1976. Importance of spores and δ-endotoxin protein crystals of Bacillus thuringiensis in Galleria mellonella. J. Invertebr. Pathol. 27: 8794.CrossRefGoogle Scholar
Campbell, D.P., Dieball, D.E., and Brackett, J.M.. 1987. Rapid HPLC assay for the β-exotoxin of Bacillus thuringiensis. J. Agric. Food Chem. 35: 156158.CrossRefGoogle Scholar
Carlton, B.C. 1988. Genetic improvements of Bacillus thuringiensis as a bioinsecticide. pp. 38–43 in Roberts, D.W., and Granados, R.R. (Eds.), Biotechnology, Biological Pesticides and Novel Plant Pest Resistance for Insect Pest Management. Boyce Thompson Institute, Ithaca, NY. 175 pp.Google Scholar
Chambers, J.A., Jelen, A., Gilbert, M.P., Jany, C.S., Johnson, T.S., and Gawron-Burke, C.. 1991. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173: 39663976.CrossRefGoogle ScholarPubMed
Chestukhina, G.G., Zalunin, I.A., Kostina, L.I., Kotova, T.S., Katrukha, S.P., Lyublinskay, L.A., and Stepanov, V.M.. 1978. Proteolytic enzymes bound to Bac. thuringiensis crystals. Biokhimiya 43: 857864.Google ScholarPubMed
Chestukhina, G.G., Zalunin, I.A., L.I. Kostina, Kotova, T.S., Kattrukha, S.P., and Stepanov, V.M.. 1980. Crystal-forming proteins of Bacillus thuringiensis. The limited hydrolysis by endogeneous proteinases as a cause of their apparent multiplicity. Biochem. J. 187: 457465.CrossRefGoogle ScholarPubMed
Chunjatupornchai, W., Hofte, H., Seurinck, J., Angusuthanasombat, C., and Vaeck, M.. 1988. Common features of Bacillus thuringiensis toxins specific for Diptera and Lepidoptera. Eur. J. Biochem. 173: 916.CrossRefGoogle Scholar
Dame, D.A., Savage, K.E., Meisch, M.V., and Oldacre, S.L.. 1981. Assessment of industrial formulations of Bacillus thuringiensis var. insraelensis. Mosq. News 41: 540546.Google Scholar
de Barjac, H. 1978. On nouvelle variete de Bacillus thuringiensis tres toxique pour les moustiques: B. thuringiensis var. israelensis, serotype 14. C. R. Acad. Sci. (Paris) Ser. D. 286: 797800.Google Scholar
de Barjac, H. 1981. Identification of H-serotypes of Bacillus thuringiensis. pp. 35–43 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, New York, NY. 949 pp.Google Scholar
de Barjac, H., and Bonnefoi, A.. 1962. Essai de classification biochemique et serologique de 24 souches de Bacillus du type B. thuringiensis. Entomophaga 7: 531.CrossRefGoogle Scholar
de Barjac, H., and Bonnefoi, A.. 1968. A classification of strains of Bacillus thuringiensis Berliner with a key to their differentiation. J. Invertebr. Pathol. 11: 335347.CrossRefGoogle ScholarPubMed
de Barjac, H., and Bonnefoi, A.. 1973. Mise au point sur la classification des Bacillus thuringiensis. Entomophaga 18: 517.CrossRefGoogle Scholar
de Barjac, H., and Frachon, E.. 1990. Classification of Bacillus thuringiensis strains. Entomophaga 35: 233240.CrossRefGoogle Scholar
de Barjac, H., and Lemille, F.. 1970. Presence of flagellar antigenic subfactors in Serotype 3 of Bacillus thuringiensis. J. Invertebr. Pathol. 15: 139140.CrossRefGoogle Scholar
Delafield, F.P., Somerville, H.J., and Rittenberg, S.C.. 1968. Immunological homology between crystal and spore protein of Bacillus thuringiensis. J. Bacteriol. 96: 713720.CrossRefGoogle ScholarPubMed
De Lucca, A.J. 1984. Lectin grouping of Bacillus thuringiensis serovars. Can. J. Microbiol. 30: 11001104.CrossRefGoogle ScholarPubMed
Dimock, M.B., Beach, R.M., and Carlson, P.S.. 1988. Endophytic bacteria for the delivery of crop protection agents. pp. 88–92 in Roberts, D.W., and Granados, R.R. (Eds.), Biotechnology, Biological Pesticides and Novel Plant—Pest Resistance for Insect Pest Management. Boyce Thompson Institute, Ithaca, NY. 175 pp.Google Scholar
Donovan, W.P., Dankocsik, C.C., and Gilbert, M.P.. 1988 a. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 170: 47324738.CrossRefGoogle ScholarPubMed
Donovan, W.P., Dankocsik, C.C., Gilbert, M.P., Gawron-Burke, M.C., Groat, R.G., and Carlton, B.C.. 1988 b. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var kurstaki. J. Biol. Chem. 263: 561567.CrossRefGoogle ScholarPubMed
Dubois, N.R. 1985. Selection of new more potent strains of Bacillus thuringiensis for use against gypsy moth and spruce budworm. pp. 99–102 in Grimble, D.G., and Lewis, F.B. (coords.), Proceedings, Symposium: Microbial Control of Spruce Budworms and Gypsy Moths. USDA Forest Serv. Gen. Tech. Rep. NE-100. 175 pp.Google Scholar
Dulmage, H.T. 1970. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Invertebr. Pathol. 15: 232239.CrossRefGoogle Scholar
Dulmage, H.T. 1973. B. thuringiensis U. S. Assay Standard. Report on the adoption of a primary U.S. reference standard for assay of formulations containing the δ-endotoxin of Bacillus thuringiensis. Bull. ent. Soc. Am. 19: 200202.Google Scholar
Dulmage, H.T., Boening, O.P., Rehnborg, C.S., and Hansen, G.D.. 1971. A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the international unit. J. Invertebr. Pathol. 18: 240245.CrossRefGoogle ScholarPubMed
Dulmage, H.T., and Rhodes, R.A.. 1971. Production of pathogens in artificial media. pp. 507–540 in Burges, H.D., and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York, NY. 861 pp.Google Scholar
Farkas, J., Sebesta, K., Horska, K., Samek, Z., Dolejs, L., and Sorm, F.. 1969. The structure of exotoxin of Bacillus thuringiensis var. gelechiae. Coll. Czech. Chem. Commun. 34: 11181120.CrossRefGoogle Scholar
Fast, P.G. 1977. Bacillus thuringiensis δ-endotoxin: On the relative role of spores and crystals in toxicity to spruce budworm (Lepidoptera: Tortricidae). Can. Ent. 109: 15151518.CrossRefGoogle Scholar
Faust, R.M., and Bulla, L.A. Jr, 1982. Bacteria and their toxins as insecticides. pp. 75–208 in Kurstak, E. (Ed.), Microbial and Viral Pesticides. Marcel Dekker, New York, NY. 720 pp.Google Scholar
Ferre, J., Real, M.D., Van Rie, J., Jansens, S., and Peferoen, M.. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 51195123.CrossRefGoogle Scholar
Ferro, D.N., and Lyon, S.M.. 1991. Colorado potato beetle (Coleoptera: Chrysomelidae) larval mortality: Operative effects of Bacillus thuringiensis subsp. san diego. J. econ. Ent. 84: 806809.CrossRefGoogle Scholar
Fischhoff, D.A., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G., and Fraley, R.T.. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807813.Google Scholar
Fuchs, R.L., MacIntosh, S.C., Dean, D.A., Greenplate, J.T., Perlak, F.J., Pershing, J.C., Marrone, P.G., and Fischhoff, D.A.. 1990. Quantification of Bacillus thuringiensis insect control protein as expressed in transgenic plants. pp. 105–113 in Hickle, L.A., and Fitch, W.L. (Eds.), Analytical Chemistry of Bacillus thuringiensis. American Chemical Society, Washington, DC. 148 pp.Google Scholar
Gelernter, W.D. 1990. Targeting insecticide-resistant markets. New developments in microbial-based products. pp. 105–117 in Green, M.B., LeBaron, H.M., and Moberd, W.K. (Eds.), Managing Resistance to Agrochemicals. From Fundamental Research to Practical Strategies. American Chemical Society, Washington, DC. 496 pp.Google Scholar
Gerhardt, P., Pankratz, H.S., and Scherrer, R.. 1976. Fine structure of the Bacillus thuringiensis spore. Appl. Environ. Microbiol. 32: 438440.CrossRefGoogle Scholar
Gingrich, R.E., Haufler, M., and Allan, N.A.. 1992 a. Bioassay for β-exotoxin and other compounds of Bacillus thuringiensis with larvae of the horn fly, Haematobia irritans. In Lewis, L.C., and Burges, H.T. (Eds.), Spectrum of Activities of Varieties of Bacillus thuringiensis. CRC Press, Boca Raton, FL. In press.Google Scholar
Gingrich, R.E., Haufler, M., and Allan, N.A.. 1992 b. Bioassay of HD formulations of Bacillus thuringiensis with adults of the hairy goat louse, Bovicola crassipes. In Lewis, L.C., and Burges, H.T. (Eds.), Spectrum of Activities of Varieties of Bacillus thuringiensis. CRC Press, Boca Raton, FL. In press.Google Scholar
Goldberg, L.J. 1979. Mosquito larvae control using a bacterial larvicide. U.S. Patent 4,166,112.Google Scholar
Goldberg, L.J., and Margalit, J.. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univeritattus, Aedes aegypti, and Culex pipiens. Mosq. News 37: 355358.Google Scholar
Gonzalez, J.M. Jr, Brown, B.J., and Carlton, B.C.. 1982. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79: 69516955.CrossRefGoogle ScholarPubMed
Gonzalez, J.M. Jr, and Carlton, B.C.. 1980. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3: 9298.CrossRefGoogle ScholarPubMed
Gonzalez, J.M. Jr, and Carlton, B.C.. 1982. Plasmid transfer in Bacillus thuringiensis. pp. 85–95 in Streips, U.N., Goodgal, S.H., Guild, W.R., and Wilson, G.A. (Eds.), Genetic Exchange: A Celebration and a New Generation. Marcel Dekker, New York, NY. 369 pp.Google Scholar
Gonzalez, J.M. Jr, and Carlton, B.C.. 1984. A large transmissible plasmid is required for crystal production in Bacillus thuringiensis. Plasmid 11: 2838.CrossRefGoogle ScholarPubMed
Gonzalez, J.M. Jr, Dulmage, H.T., and Carlton, B.C.. 1981. Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis. Plasmid 5: 351365.CrossRefGoogle ScholarPubMed
Gordon, R.E., Haynes, W.C., and Pang, C.H.-N.. 1973. The genus Bacillus. U.S. Dept. Agric. Handbook 427: 283 pp.Google Scholar
Grigorova, R., and Kalucheva, I.. 1966. Electron microscopic investigations on the shape of the crystals of six strains of Bacillus thuringiensis Berliner. C. R. Acad. Bull. Sci. 19: 10751078.Google Scholar
Haider, M.Z., Knowles, B.H., and Ellar, D.J.. 1986. Specificity of Bacillus thuringiensis var. colmeri insecticidal δ-endotoxin is determined by differential proteolytic processing of the protoxin. Eur. J. Biochem. 156: 531540.CrossRefGoogle ScholarPubMed
Hall, I.M., Hale, R.L., Shorey, H.H., and Arakawa, K.Y.. 1961. Evaluation of chemical and microbial materials for control of the cabbage looper. J. econ. Ent. 54: 141146.CrossRefGoogle Scholar
Hannay, C.L. 1953. Crystalline inclusions in aerobic sporeforming bacteria. Nature 172: 1004.CrossRefGoogle Scholar
Hartung, M., and Hellmann, E.. 1987. Examination of 20 Bacillus species by crossed immunoelectrophoresis under taxonomic aspects. Zbl. Bakt. Hyg. A. 263: 509524.Google ScholarPubMed
Heimpel, A.M. 1967. A critical review of Bacillus thuringiensis Berliner and other crystalliferous bacteria. pp. 287322in Smith, R.F., and Mittler, T.E. (Eds.), Annual Review of Entomology. Vol. 12. Annual Reviews, Palo Alto, CA. 563 pp.Google Scholar
Heimpel, A.M. 1972. Insect control by microbial agents. pp. 298–316 in National Academy of Science Pest Control Strategies for the Future. NAS, Washington, DC. 376 pp.Google Scholar
Heimpel, A.M., and Angus, T.A.. 1958. The taxonomy of insect pathogens related to Bacillus cereus Frankland and Frankland. Can. J. Microbiol. 4: 531541.CrossRefGoogle ScholarPubMed
Heimpel, A.M., and Angus, T.A.. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. J. Insect Pathol. 1: 152170.Google Scholar
Heimpel, A.M., and Angus, T.A.. 1960 a. Bacterial insecticides. Bacteriol. Rev. 24: 266288.CrossRefGoogle ScholarPubMed
Heimpel, A.M., and Angus, T.A.. 1960 b. On the taxonomy of certain entomogenous crystalliferous bacteria. J. Insect Pathol. 2: 311319.Google Scholar
Held, G.A., Bulla, L.A. Jr, Ferrari, E., Hoch, J., Aronson, A.I., and Minnich, S.A.. 1982. Cloning and localization of the lepidopteran protoxin gene of Bacillus thuringiensis subsp. kurstaki. Proc. Natl. Acad. Sci. USA 79: 60656069.CrossRefGoogle ScholarPubMed
Herrnstadt, C., Gilroy, T.E., Sobieski, D.A., Bennett, B.D., and Gaertner, F.H.. 1987. Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp. san diego. Gene 57: 3746.CrossRefGoogle ScholarPubMed
Herrnstadt, C., Soares, G.C., Wilcox, E.R., and Edwards, D.L.. 1986. A new strain of Bacillus thuringiensis with activity against coleopteran insects. Bio/Technology 4: 305308.Google Scholar
Hofte, H., Seurinck, J., Van Houtven, A., and Vaeck, M.. 1987. Nucleotide sequence of a gene encoding an insecticidal protein of Bacillus thuringiensis tenebrionis toxic against Coleoptera. Nucl. Acids Res. 15: 7183.CrossRefGoogle ScholarPubMed
Hofte, H., Soetaert, P., Jansens, S., and Peferoen, M.. 1990. Nucleotide sequence and deduced amino acid sequence of a new Lepidoptera-specific cyrstal protein gene from Bacillus thuringiensis. Nucl. Acids Res. 18: 5545.CrossRefGoogle Scholar
Hofte, H., and Whiteley, H.R.. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242255.CrossRefGoogle ScholarPubMed
Holmes, K.C., and Monro, R.E.. 1965. Studies on the structure of parasporal inclusions from Bacillus thuringiensis. J. Mol. Biol. 14: 572581.CrossRefGoogle ScholarPubMed
Honee, G., van der Salm, T., and Visser, B.. 1988. Nucleotide sequence of crystal protein gene isolated from B. thuringiensis subspecies entomocidus 60.5 coding for a toxin highly active against Spodoptera species. Nucl. Acids Res. 16: 6240.CrossRefGoogle Scholar
Ignoffo, C.M. 1973. Effects of entomopathogens on vertebrates. Ann. N. Y. Acad. Sci. 217: 141164.CrossRefGoogle ScholarPubMed
Ignoffo, C.M., Garcia, C., and Couch, T.L.. 1977 a. Effect of antibiotics on the insecticidal activity of Bacillus thuringiensis. J. Invertebr. Pathol. 30: 277278.CrossRefGoogle Scholar
Ignoffo, C.M., Hostetter, D.L., Pinnell, R.E., and Garcia, C.. 1977 b. Relative susceptibility of six soybean caterpillars to a standard preparation of Bacillus thuringiensis var. kurstaki. J. econ. Ent. 70: 6063.CrossRefGoogle Scholar
Iizuka, T., Faust, R.M., and Travers, R.S.. 1981. Isolation and partial characterization of extrachromosomal DNA from serotypes of Bacillus thuringiensis pathogenic to lepidopteran and dipteran larvae by agarose gel electrophoresis. J. Seric. Sci. JPN 50: 120133.Google Scholar
Iizuka, T., and Yamamoto, T.. 1983. Possible location of the mosquitocidal protein in the crystal preparation of Bacillus thuringiensis subsp. kurstaki. FEMS Microbiol. Lett. 19: 187192.CrossRefGoogle Scholar
Isakova, N.P. 1958. A new variety of bacterium of the “cereus” type pathogenic for insects. Dokl. Akad. Sci. Nauk. Selsk. 3: 2627.Google Scholar
Ishiwata, S. 1901. On a kind of severe flacherie (sotto disease) (No. 1). Dainihon Sanshi Kaiho 114: 15. [In Japanese.]Google Scholar
Ishiwata, S. 1905 a. About “sottokin,” a bacillus of a disease of the silk-worm. Dainihon Sanshi Kaiho [Rep. Sericult. Assoc. Jpn.] 160: 18.Google Scholar
Ishiwata, S. 1905 b. About “sottokin,” a bacillus of a disease of the silk-worm. Dainihon Sanshi Kaiho [Rep. Sericult. Assoc. Jpn.] 161: 15.Google Scholar
Ivinskiene, V. 1978. Nonidentity of lecithinase and α-toxin from Bacillus thuringiensis Berliner. Tezisy konf. Molodykh Uch. Inst. Zool. Parazithol. Akad. Nauk. Lit. USSR 2: 1315.Google Scholar
Jacobs, S.E. 1951. Bacteriological control of the flour moth, Ephestia kuehniella. Z. Proc. Soc. appl. Bacteriol. 13: 8391.CrossRefGoogle Scholar
Jahn, N., Schnetter, W., and Geider, K.. 1987. Cloning of an insecticidal toxin gene of Bacillus thuringiensis in subsp. tenebrionis and its expression in Escherichia coli cells. FEMS Microbiol. Lett. 48: 311315.CrossRefGoogle Scholar
Jarrett, P. 1983. Comparison of plasmids from twelve isolates of Bacillus thuringiensis H-serotype 7. FEMS Microbiol. Lett. 16: 5560.CrossRefGoogle Scholar
Jones, D.R., Karunakaran, V., and Burges, H.D.. 1983. Phages naturally associated with the aizawai variety of insect pathogen Bacillus thuringiensis and their relevance to strain identification. J. appl. Bacteriol. 54: 373377.CrossRefGoogle Scholar
Kaneda, T. 1967. Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J. Bacteriol. 93: 894904.CrossRefGoogle ScholarPubMed
Kaneda, T. 1968. Fatty acids in the genus Bacillus. II. Similarity in the fatty acid compositions of Bacillus thuringiensis. Bacillus anthracis, and Bacillus cereus. J. Bacteriol. 95: 22102216.CrossRefGoogle ScholarPubMed
Kaneko, T., Nozaki, R., and Aizawa, K.. 1978. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22: 639641.CrossRefGoogle ScholarPubMed
Klier, A., Fargette, F., Ribier, J., and Rapoport, G.. 1982. Cloning and expression of the crystal protein gene from Bacillus thuringiensis strain berliner 1715. EMBO J. 1: 791799.CrossRefGoogle ScholarPubMed
Klier, A., Parsot, C., and Rapoport, G.. 1983. In vitro transcription of the cloned chromosomal crystal gene from Bacillus thuringiensis. Nucl. Acids Res. 11: 39733987.CrossRefGoogle ScholarPubMed
Krieg, A. 1965 a. Identifizienrung von Bacillus thuringiensis var. thruingiensis in mikrobiologischen praparaten durch kombination von immunofluoreszenzund phasenkontrast-verfahren. Zentialfl. Bakteriol. Parasitenk. Infektionskr. Hyg. 197: 527532.Google Scholar
Krieg, A. 1965 b. Uber die vivo-titration (bioassay-biotest) von insektenpathogenen, speziell von Bacillus thuringiensis. Entomophaga 10: 320.CrossRefGoogle Scholar
Krieg, A. 1970. In vitro determination of Bacillus thuringiensis, Bacillus cerus, and related bacilli. J. Invertebr. Pathol. 15: 313320.CrossRefGoogle Scholar
Krieg, A. 1971 a. Concerning α-exotoxin produced by vegetative cells of Bacillus thuringiensis and Bacillus cereus. J. Invertebr. Pathol. 17: 134135.CrossRefGoogle Scholar
Krieg, A. 1971 b. Is the potential pathogenicity of bacilli for insects related to production of α-exotoxin? J. Invertebr. Pathol. 18: 425426.CrossRefGoogle Scholar
Krieg, A. 1986. Bacillus thuringiensis, ein mikrobielles Insektizid, Grundlagen und Anwendung. Acta Phytomed. 10: 1191.Google Scholar
Krieg, A., Huger, A.M., Langenbruch, G.A., and Schnetter, W.. 1983. Bacillus thuringiensis var. tenebrionis: en neuer, gegenuber Larven von Coleopteren wirksamer Pathotyp. Z. angew. Ent. 96: 500508.CrossRefGoogle Scholar
Krieg, A., Huger, A.M., and Schnetter, W.. 1987. “Bacillus thuringiensis var. san diego” Stamm M-7 ist identisch mit dem zuvor in Deutschland isolierten kaferwirksamen B. thuringiensis subsp. tenebrionis Stamm BI 256-82. Z. angew. Ent. 104: 417424.Google Scholar
Krieg, A., and Lysenko, O.. 1979. Toxins and enzymes of several species of Bacillus, especially of the B. cereus-thuringiensis group. Zbl. Bakt. II. Abt. 134: 7088.Google Scholar
Kronstad, J.W., Schnepf, H.E., and Whiteley, H.R.. 1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol. 154: 419428.CrossRefGoogle ScholarPubMed
Krywienczyk, J., and Angus, T.A.. 1960. A serological comparison of the parasporal bodies of three insect pathogens. J. Insect Pathol. 2: 411417.Google Scholar
Krywienczyk, J., Dulmage, H.T., and Fast, P.G.. 1978. Occurrence of two serologically distinct groups within Bacillus thuringiensis serotype 3a,b var. kurstaki. J. Invertebr. Pathol. 31: 372375.CrossRefGoogle Scholar
Kurstak, E. 1962. Donnees sur l'epizootie bacterienne naturelle provoguee par un Bacillus du type Bacillus thuringiensis sur Ephestia kuhniella Zeller. Entomophaga Mem. Hors Ser. 2: 245247.Google Scholar
Lacey, L.A., Mulla, M.S., and Dulmage, H.T.. 1978. Some factors affecting the pathogenicity of Bacillus thuringiensis Berliner against blackflies. Environ. Ent. 7: 583588.CrossRefGoogle Scholar
Lamanna, C., and Jones, L.. 1961. Antigenic relationship of the endospores of Bacillus cereus-like insect pathogens to Bacillus cereus and Bacillus anthracis. J. Bacteriol. 81: 622625.CrossRefGoogle ScholarPubMed
Lamanna, C., and Jones, L.. 1963. Lethality for mice of vegetative and spore forms of Bacillus cereus and Bacillus cereus-like insect pathogens injected intraperitoneally and subcutaneously. J. Bacteriol. 85: 532535.CrossRefGoogle ScholarPubMed
Lacadet, M.M., Chevrier, G., and Dedonder, R.. 1972. Analysis of a protein fraction in the spore coats of Bacillus thuringiensis-comparison with crystal protein. Eur. J. Biochem. 25: 349358.CrossRefGoogle Scholar
Lecadet, M., and Martouret, D.. 1964. Etude comparee de l'hydrolyse enzymatique des cristaux des souches Bacillus thuringiensis serotype I Berliner et B. thuringiensis serotype III anduze. Entomophaga Mem. Hors Ser. 2: 205212.Google Scholar
Lereclus, D., Lecadet, M.M., Ribier, J., and Dedonder, R.. 1982. Molecular relationship among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186: 391398.CrossRefGoogle ScholarPubMed
Levinson, B.L., Kasyan, K.J., Chiu, S.S., Currier, T.C., and Gonzales, J.M. Jr, 1990. Identification of β-exotoxin production, plasmids encoding β-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography. J. Bacteriol. 172: 31723179.CrossRefGoogle Scholar
Li, J., Carroll, J., and Ellar, D.J.. 1991. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353: 815821.CrossRefGoogle ScholarPubMed
Li, R.S., Jarrett, P., and Burges, H.D.. 1987. Importance of spores, crystals, and δ-endotoxins in the pathogenecity of different varieties of Bacillus thuringiensis in Galleria mellonella and Pieris brassicae. J. Invertebr. Pathol. 50: 277284.CrossRefGoogle Scholar
McConnel, E., and Richards, A.G.. 1959. The production by Bacillus thuringiensis Berliner of a heat-stable substance toxic for insects. Can. J. Microbiol. 5: 161168.CrossRefGoogle Scholar
McEwen, F.L., Glass, E.H., Davis, A.C., and Splittstoessor, C.M.. 1960. Field tests with Bacillus thuringiensis Berliner for control of four lepidopterous pests. J. Insect Pathol. 1: 152164.Google Scholar
McGaughey, W.H. 1978. Response of Plodia interpunctella and Ephestia cautella larvae to spores and parasporal crystals of Bacillus thuringiensis. J. econ. Ent. 71: 687688.CrossRefGoogle Scholar
McGaughey, W.H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193195.CrossRefGoogle Scholar
McGaughey, W.H., and Beeman, R.W.. 1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. econ. Ent. 81: 2833.CrossRefGoogle Scholar
McLaughlin, R.E., Dulmage, H.T., Alls, R., Couch, T.L., Dame, D.A., Hall, I.M., Rose, R.I., and Versoi, P.L.. 1984. U. S. Standard bioassay for the potency assessment of Bacillus thuringiensis serotype H-14 against mosquito larvae. Bull. ent. Soc. Am. 30: 2629.Google Scholar
McPherson, S.A., Perlack, F.J., Fuchs, R.L., Marrone, P.G., Lavrik, P.B., and Fischhoff, D.A.. 1988. Characterization of the coleopteran-specific protein gene of Bacillus thuringiensis var. tenebrionis. Bio/Technology 6: 6166.Google Scholar
Mechalas, B.J., and Anderson, N.B.. 1964. Bioassay of Bacillus thuringiensis Berliner-based microbial insecticides. II. Standardization. J. Insect Pathol. 6: 218224.Google Scholar
Mechalas, B.J., and Dunn, P.H.. 1964. Bioassay of Bacillus thuringiensis Berliner-based microbial insecticides. I. Bioassay Procedures. J. Insect Pathol. 6: 214217.Google Scholar
Menn, J.J. 1960. Bioassay of a microbial insecticide containing spores of Bacillus thuringiensis. J. Insect Pathol. 2: 134138.Google Scholar
Moar, W.J., Masson, L., Brousseau, R., and Trumble, J.T.. 1990. Toxicity to Spodoptera exigua and Trichoplusia ni of individual P1 protoxins and sporulated cultures of Bacillus thuringiensis subsp. kurstaki HD-1 and NRD-12. Appl. Environ. Microbiol. 56: 24802483.CrossRefGoogle ScholarPubMed
Moar, W.J., Trumble, J.T., and Federrici, B.A.. 1989. Comparative toxicity of spores and crystals from the NRD-12 and HD-1 strains of Bacillus thuringiensis subsp. kurstaki to neonate beet armyworm (Lepidoptera: Noctuidae). J. econ. Ent. 82: 15931603.CrossRefGoogle Scholar
Mohd-Salleh, M.B., Beegle, C.C., and Lewis, L.C.. 1980. Fermentation media and production of exotoxin by three varieties of Bacillus thuringiensis. J. Invertebr. Pathol. 35: 7583.CrossRefGoogle Scholar
Mohd-Salleh, M.B., and Lewis, L.C.. 1982. Toxic effects of spore/crystal ratios of Bacillus thuringiensis on European corn borer larvae. J. Invertebr. Pathol. 39: 290297.CrossRefGoogle Scholar
Norris, J.R. 1964. The classification of Bacillus thuringiensis. J. appl. Bacteriol. 27: 439447.CrossRefGoogle Scholar
Norris, J.R. 1970. Sporeformers as insecticides. J. appl. Bacteriol. 33: 192206.CrossRefGoogle ScholarPubMed
O'Donnell, A.G., MacFie, H.J.H., and Norris, J.R.. 1980. An investigation of the relationship between Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides using pyrolysis gas-liquid chromatography. J. Gen. Microbiol. 119: 189194.Google Scholar
Ohba, M., and Aizawa, K.. 1978. Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32: 303309.CrossRefGoogle Scholar
Ohba, M., Tantichodok, A., and Aizawa, K.. 1981. Production of heat-stable exotoxin by Bacillus thuringiensis and related bacteria. J. Invertebr. Pathol. 38: 2632.CrossRefGoogle Scholar
Perlak, F.J., Deaton, R.W., Armstrong, T.A., Fuchs, R.L., Sims, S.R., Greenplate, J.T., and Fischhoff, D.A.. 1990. Insect resistant cotton plants. Bio/Technology 8: 939943.Google ScholarPubMed
Riethmuller, U., and Langenbruch, G.A.. 1989. Zwei Biotestmethoden zur Prufung von Bacillus thuringiensis subspec. tenebrionis gegen Larven des Kartoffelkafers (Leptinotasa decemlineata). Entomophaga 34: 237245.CrossRefGoogle Scholar
Roehrich, R. 1962. Essais de laboratoire de preparations a base de Bacillus thuringiensis Berliner contre les chenilles du carpocapse (Laspeyresia pomonella L.). Coll. Int. Pathol. Insectes. Paris: 312313.Google Scholar
Rogoff, M.H., and Yousten, A.A.. 1969. Bacillus thuringiensis: Microbiological considerations. pp. 357386in Clifton, C.E., Reffel, S., and Starr, M.P. (Eds.), Annual Review of Microbiology. Vol. 23. Annual Reviews, Palo Alto, CA.Google Scholar
Salama, H.S., Foda, M.S., and Sharaby, A.. 1989. A proposed new biological standard for bioassay of bacterial insecticides vs. Spodoptera spp. Trop. Pest Manage. 35: 326330.CrossRefGoogle Scholar
Sandvik, O. 1973. Comparison of Bacillus thuringiensis with other Bacillus species based on enzymoserological examinations of their proteolytic enzymes. Acta Vet. Scand. 14: 176183.CrossRefGoogle ScholarPubMed
Scherrer, P.S., and Somerville, H.J.. 1977. Membrane fractions from the outer layers of spores of Bacillus thuringiensis with toxicity to lepidopterous larvae. Eur. J. Biochem. 72: 479490.CrossRefGoogle ScholarPubMed
Schnepf, H.E., and Whiteley, H.R.. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 28932897.CrossRefGoogle ScholarPubMed
Schnepf, H.E., Wong, H.C., and Whiteley, H.R.. 1985. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. Biol. Chem. 260: 62646272.CrossRefGoogle ScholarPubMed
Sebesta, K., and Horska, K.. 1970. Mechanisms of inhibition of DNA-dependent RNA polymerase by exotoxin of Bacillus thuringiensis. Biochim. Biophys. Acta 209: 357367.CrossRefGoogle ScholarPubMed
Sekar, V., Thompson, D.V., Maroney, M.J., Bookland, R.G., and Adang, M.J.. 1987. Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis. Proc. Natl. Acad. Sci. USA 84: 70367040.CrossRefGoogle ScholarPubMed
Seki, T., Chung, C.-K., Mikami, H., and Oshima, Y.. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28: 182189.CrossRefGoogle Scholar
Sekijima, Y., and Ono, K.. 1982. Grouping of Bacillus thuringiensis by heat-stable somatic antigens. Appl. Ent. Zool. 17: 393397.CrossRefGoogle Scholar
Sharpe, E.S., and Baker, F.L.. 1979. Ultrastructure of the unusual crystal of the HD-1 isolates of Bacillus thuringiensis var. kurstaki. J. Invertebr. Pathol. 34: 320322.CrossRefGoogle Scholar
Short, J.A., Walker, P.O., Thomson, R.D., and Somerville, H.J.. 1974. Fine structure of Bacillus finitimus and Bacillus thuringiensis spores with special reference to the location of crystal antigen. J. Gen. Microbiol. 84: 261276.CrossRefGoogle Scholar
Sick, A., Gaetner, F., and Wong, A.. 1990. Nucleotide sequence of a coleopteran-active toxin gene from a new isolate of Bacillus thuringiensis subsp. tolworthi. Nucl. Acids Res. 18: 1305.CrossRefGoogle ScholarPubMed
Singer, S. 1980. Bacillus sphaericus for the control of mosquitos. Biotechnol. Bioeng. 22: 13351355.CrossRefGoogle Scholar
Smirnoff, W.A. 1964. Considerations on the toxic and labile substance produced by Bacillus thuringiensis Berliner (labile exotoxin). Entomophaga Mem. Hors Ser. 2: 249254.Google Scholar
Smirnoff, W.A., and Valero, J.R.. 1979. Mode d'action de Bacillus thuringiensis chez Chrisotoneura fumiferana (Lepidoptera-Tortricidae): Importance des spores. Can. Ent. 111: 305308.CrossRefGoogle Scholar
Smith, N.R., Gordon, R.E., and Clark, F.E.. 1952. Aerobic sporeforming bacteria. U. S. Dept. Agric. Monog. 16: 148 pp.Google Scholar
Smith, R.A. 1982. Effect of strain and medium variation on mosquito toxin production by Bacillus thuringiensis var. israelensis. Can. J. Microbiol. 28: 10891092.CrossRefGoogle ScholarPubMed
Smith, R.A. 1987. Use of crystal serology to differentiate among varieties of Bacillus thuringiensis. J. Invertebr. Pathol. 50: 18.CrossRefGoogle Scholar
Smith, R.A., and Ulrich, J.T.. 1983. Enzyme-linked immunosorbent assay for quantitative detection of Bacillus thuringiensis crystal protein. Appl. Environ. Microbiol. 45: 586590.CrossRefGoogle ScholarPubMed
Soliman, A.A., Afify, A.M., Abdel-Rahman, H.A., and Attwa, W.A.. 1970. Wirksamkeit verschiedener komponenten von Bacillus thuringiensis Berliner auf drei larvenstadien von Pieris rapae L. Sonderd. Ang. Schaedlingsk. Pflanzenschutz. 43: 161165.Google Scholar
Somerville, H.J., Delafield, F.P., and Rittenberg, S.C.. 1968. Biochemical homology between crystal and spore proteins of Bacillus thuringiensis. J. Bacteriol. 96: 721726.CrossRefGoogle ScholarPubMed
Somerville, H.J., Delafield, F.P., and Rittenberg, S.C.. 1970. Urea-mercaptoethanol-soluble protein from spores of Bacillus thuringiensis and other species. J. Bacteriol. 101: 551560.CrossRefGoogle ScholarPubMed
Somerville, H.J., and Jones, M.L.. 1972. DNA competition studies within the Bacillus cereus group of bacilli. J. Gen. Microbiol. 73: 257265.CrossRefGoogle ScholarPubMed
Somerville, H.J., and Pockett, H.V.. 1974. Toxicity of fractions from spores of Bacillus thuringiensis and Bacillus megaterium to insect larvae. p. 257in Barker, A.N., Gold, G.W., and Wolf, J. (Eds.), Spore Research 1973. Academic Press, New York, NY.Google Scholar
Somerville, H.J., and Pockett, H.V.. 1975. An insect toxin from spores of Bacillus thuringiensis and Bacillus cereus. J. Gen. Microbiol. 87: 359369.CrossRefGoogle ScholarPubMed
Somerville, H.J., Tanada, Y., and Omi, E.M.. 1970. Lethal effect of purified spore and crystalline endotoxin preparations of Bacillus thuringiensis on several lepidopterous insects. J. Invertebr. Pathol. 16: 241248.CrossRefGoogle Scholar
Stably, D.P., Dingman, D.W., Bulla, L.A. Jr, and Aronson, A.I.. 1978. Possible origin and function of the parasporal crystals in Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 84: 581588.Google Scholar
Steinhaus, E.A. 1951. Possible use of Bacillus thuringiensis as an aid in the biological control of the alfalfa caterpillar. Hilgardia 20: 359381.CrossRefGoogle Scholar
Steinhaus, E.A. 1956 a. Potentialities for microbial control of insects. J. Agric. Food Chem. 4: 676680.Google Scholar
Steinhaus, E.A. 1956 b. Living insecticides. Sci. Am. 195: 96100.CrossRefGoogle Scholar
Stone, T.B., Sims, S.R., and Marrone, P.G.. 1989. Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. kurstaki. J. Invertebr. Pathol. 53: 228234.CrossRefGoogle Scholar
Sutter, G.R., and Raun, E.S.. 1966. The effect of Bacillus thuringiensis components on the development of the European corn borer. J. Invertebr. Pathol. 8: 457460.CrossRefGoogle Scholar
Sutter, G.R., and Raun, E.S.. 1967. Histopathology of European-corn-borer larvae treated with Bacillus thuringiensis. J. Invertebr. Pathol. 9: 90103.CrossRefGoogle Scholar
Tabasnik, B.E., Cushing, N.L., Finson, N., and Johnson, M.W.. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. econ. Ent. 83: 16711676.CrossRefGoogle Scholar
Talalaev, E.V. 1956. Septicemia of the caterpillars of the Siberian silkworm. Mikrobiologiya 25: 99.Google Scholar
Thorne, L., Garduno, F., Thompson, T., Decker, D., Zounes, M., Wild, M., Walfield, A.M., and Pollock, T.J.. 1986. Structural similarity between the Lepidoptera- and Diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. “kurstaki” and “israelensis.” J. Bacteriol. 166: 801811.CrossRefGoogle ScholarPubMed
Toumanoff, C. 1954. L'action de Bacillus cereus var. alesti Toum. et Vago sur les chenilles de Galleria melonella L. and Hyponomeuta cognatella. Ann. Inst. Pasteur Paris 86: 570597.Google ScholarPubMed
Turnbull, P.C.B. 1981. Bacillus cereus toxins. Pharmac. Ther. 13: 453505.CrossRefGoogle ScholarPubMed
Tyrell, D.J., Bulla, L.A. Jr, Andrews, R.E. Jr, Kramer, K.J., Davidson, L.I., and Nordin, P.. 1981. Comparative biochemistry of entomocidal parasporal crystals of selected Bacillus thuringiensis strains. J. Bacteriol. 145: 10521062.CrossRefGoogle ScholarPubMed
Tyski, S. 1989. Radioimmunoassay of δ-endotoxin from B. thuringiensis: Correlation with bioassay. Toxicon 27: 947949.CrossRefGoogle Scholar
Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J.. 1987. Transgenic plants protected from insect attack. Nature 328: 3337.CrossRefGoogle Scholar
Vago, C., and Burges, H.D.. 1964. International symposium on the identification and assay of viruses and Bacillus thuringiensis Berliner used for insect control. J. Insect Pathol. 6: 544547.Google Scholar
Van der Geest, L.P.S., and Van der Laan, P.A.. 1971. Sources of special materials. pp. 741–749 in Burges, H.D., and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York, NY. 861 pp.Google Scholar
Van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., and Van Mellaert, H.. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 7274.CrossRefGoogle Scholar
Vervelle, C. 1975. Role des spores et des cristaux de Bacillus thuringiensis Berliner dans l'infection de Laspeyresis pomonella L. (Tortricidae). Ann. Parasitol. Hum. Comp. 50: 655668.CrossRefGoogle ScholarPubMed
Visser, B., Munsterman, E., Stoker, A., and Dirkse, W.G.. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 67836788.CrossRefGoogle ScholarPubMed
Vivoli, G., and Fabio, V.. 1967. Fatty acid composition of strains belonging to the species Bacilus cereus and B. thuringiensis. Nuovi Ann. Ig. Microbiol. 18: 166173.Google Scholar
Waalwijk, C., Dullemans, A.M., van Workum, M.E.S., and Visser, B.. 1985. Molecular cloning and the nucleotide sequence of the Mr 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis. Nucl. Acids Res. 13: 82068217.CrossRefGoogle Scholar
Wabiko, H., Raymond, K.C., and Bulla, L.A. Jr, 1986. Bacillus thuringiensis entomocidal protoxin gene sequence and gene product analysis. DNA 5: 305314.CrossRefGoogle ScholarPubMed
Ward, E.S., and Ellar, D.J.. 1983. Assignment of the δ-endotoxin gene of Bacillus thuringiensis var. israelensis to a specific plasmid by curing analysis. FEBS Lett. 158: 4549.CrossRefGoogle Scholar
Ward, E.S., and Ellar, D.J.. 1987. Nucleotide sequence of a Bacillus thuringiensis var. israelensis gene encoding a 130 kDa deltaendotoxin. Nucl. Acids Res. 15: 7175.CrossRefGoogle ScholarPubMed
Ward, E.S., Ellar, D.J., and Todd, J.A.. 1984. Cloning and expression in Escherichia coli of the insecticidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis. FEBS Lett. 175: 377382.CrossRefGoogle ScholarPubMed
Weiser, J. 1986. Impact of Bacillus thuringiensis on applied entomology in Eastern Europe and in the Soviet Union. pp. 3749in Krieg, A., and Huger, A.M. (Eds.), Mitt. Biol. Bundesanst. Land Forstrvirtsch. Berl. Dahlem. Vol. 233. Paul Parcey, Berlin.Google Scholar
Whiteley, H.R., Kronstad, J.W., Schnepf, H.E., and DesRosier, J.P.. 1982. Cloning the crystal protein gene of B. thuringiensis in E. coli. pp. 131–144 in Ganesan, A.T., Chang, S., and Hoch, J.A. (Eds.), Molecular Cloning and Gene Regulation in Bacilli. Academic Press, New York, NY. 359 pp.Google Scholar
Widner, W.R., and Whiteley, H.R.. 1989. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 171: 965974.CrossRefGoogle ScholarPubMed
Winkler, V.W., Hansen, G.D., and Yoder, J.. 1971. Immunochemical analysis of parasporal crystal digests of Bacillus thuringiensis as an index of insecticidal activity. J. Invertebr. Pathol. 18: 378382.CrossRefGoogle Scholar
World Health Organization (WHO). 1981. Mosquito Bioassay Method for Bacillus thuringiensis subsp. israelensis (H-14) (Annex 5 in WHO Report TDR. VEC-SWG(5)/81.3). 24 pp.Google Scholar
Wu, D., and Chang, F.N.. 1985. Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Lett. 190: 232236.CrossRefGoogle Scholar
Wu, D., Cao, X.L., Bai, Y.Y., and Aronson, A.I.. 1991. Sequencing of an operon containing a novel d-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol. Lett. 81: 3136.Google Scholar
Yamamoto, T. 1983. Identification of entomocidal toxins of Bacillus thuringiensis by high performance liquid chromatography. J. Gen. Microbiol. 129: 25952603.Google Scholar
Yamamoto, T., and Iizuka, T.. 1983. Two types of entomocidal toxins in the parasporal crystals of Bacillus thuringiensis kurstaki. Arch. Biochem. Biophys. 227: 233241.CrossRefGoogle ScholarPubMed
Yamamoto, T., and McLaughlin, R.E.. 1981. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103: 414421.CrossRefGoogle Scholar
Yamvrias, C., and Angus, T.A.. 1970. The comparative pathogenicity of some Bacillus thuringiensis varieties for larvae of the spruce budworm, Choristoneura fumiferana. J. Invertebr. Pathol. 15: 9299.CrossRefGoogle Scholar
Yoder, P.E., and Nelson, E.L.. 1960. Bacteriophage for Bacillus thuringiensis Berliner and Bacillus anthracis Cohn. J. Insect Pathol. 2: 198199.Google Scholar
Zakharyan, R.A., Agabalyan, A.S., Chil-Akopyan, L.A., Gasparyan, N.S., Bakunts, K.A., Tatevosyan, P.E., and Afrikyan, E.K.. 1976. About the possibility of extrachromosomal DNA in creation of the entomocidal endotoxin of B. thuringiensis. Dokl. Akad. Nauk. Arrn. SSR 63: 4247. [In Russian.]Google Scholar
Zalunin, I.A., Chestukhina, G.C., and Stepanov, V.M.. 1979. Protein composition of δ-endotoxin crystals of different serotypes of B. thuringiensis. Biochemistry 44: 546550.Google Scholar
Zehnder, G.W., and Gelernter, W.D.. 1989. Activity of the M-ONE formulation of a new strain of Bacillus thuringiensis against the Colorado potato beetle (Coleoptera: Chrysomelidae): Relationship between susceptibility and insect life stage. J. econ. Ent. 82: 756761.CrossRefGoogle Scholar