Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T00:14:26.612Z Has data issue: false hasContentIssue false

PERSISTENCE OF INSECTICIDES IN A LOBLOLLY PINE SEED ORCHARD FOR CONTROL OF THE LEAFFOOTED PINE SEED BUG, LEPTOGLOSSUS CORCULUS (SAY) (HEMIPTERA: COREIDAE)

Published online by Cambridge University Press:  31 May 2012

J.C. Nord
Affiliation:
USDA Forest Service, Southeastern Forest Experiment Station, Forestry Sciences Laboratory, Green Street, Athens, Georgia, USA30602
G.L. DeBarr
Affiliation:
USDA Forest Service, Southeastern Forest Experiment Station, Forestry Sciences Laboratory, Green Street, Athens, Georgia, USA30602

Abstract

High volume sprays of azinphosmethyl, chlorpyrifos, fenvalerate, permethrin, and phosmet in various concentrations and formulations were simulated on loblolly pine (Pinus taeda L.) foliage in a pine seed orchard in northern Georgia. Persistence of these insecticides under field conditions was determined by weekly bioassays with adult leaffooted pine seed bugs [Leptoglossus corculus (Say)] and gas–liquid chromatography. Fenvalerate was the most persistent insecticide tested. In the first experiment, 0.2% AI fenvalerate caused virtually 100% seed bug mortality in bioassays through the 4th week after treatment, whereas mortality from azinphosmethyl dropped to ca. 14%. By the 6th week, mortality in the fenvalerate treatment was still 91%, even after 10.5 cm of rain. The permethrin treatments persisted for 2 weeks, then mortality declined below 40% at 3 weeks. In the second experiment, fenvalerate at 0.15% AI and 0.075% AI caused 95 and 90% mortality, respectively, after 3 weeks and 16 cm of rain, and the toxicity of the 0.038% and the 0.019% AI fenvalerate treatments lasted only 2 weeks with 12 cm rain. Permethrin in Ambush® EC at 0.2% AI had initial residues of about 150 ppm and caused ca. 84% mortality for 2 weeks with 12 cm rain. Azinphosmethyl WP at 0.2% AI had initial residues of ca. 104 ppm and persisted for 1 week. Seed bug mortality from phosmet at 0.4% AI diminished quickly after 1 week in the field.

Résumé

Des volumes importants d’azinphosméthyl, de chlorpyrifos, de fenvalérate, de perméthrine et de phosmet en concentrations et formules variées ont servi au cours de vaporisations à petite échelle du feuillage de Pins à encens (Pinus taeda L.) dans un boisé du nord de la Géorgie. La persistance de ces insecticides dans des conditions naturelles a été déterminée par l’application de tests hebdomadaires sur des adultes de la punaise Leptoglossus corculus (Say) et par chromatographie gaz–liquide. Le fenvalérate s’est avéré l’insecticide le plus persistant. Au cours de la première expérience, du fenvalérate à raison de 0,2% AI a entraîné une mortalité de pratiquement 100% jusqu’à la fin de la 4e semaine, mais la mortalité due à l’azinphosméthyl est tombée à environ 14%. A la 6e semaine, la mortalité due au fenvalérate était toujours de 91%, en dépit d’une pluie de 10,5 cm. Les traitements à la perméthrine ont persisté durant 2 semaines, puis la mortalité a diminué jusqu’à moins de 40% à 3 semaines. Durant la deuxième expérience, l’application de fenvalérate à raison de 0,15% AI a causé une mortalité de 95%, et une application du même produit à raison de 0,075% a entraîné une mortalité de 90%, après 3 semaines et 16 cm de pluie et la toxicité de traitements au fenvalerate 0,038% et 0,019% AI n’a duré que 2 semaines avec 12 cm de pluie. La perméthrine dans le produit Ambush® EC (0,2% AI) avait des résidus initiaux d’environ 150 ppm et a entraîné une mortalité d’environ 84% pendant 2 semaines, avec 12 cm de pluie. L’azinphosméthyl WP (0,2% AI) avait des résidus initiaux d’environ 104 ppm et une persistance de 1 semaine. La mortalité des punaises à la suite de l’application de phosmet (0,4% AI) a diminué rapidement après 1 semaine en nature.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Bostanian, N.J., Belanger, A., and Rivard, I.. 1985. Residues of four synthetic pyrethroids and azinphos-methyl on apple foliage and their toxicity to Amblyseius fallacis (Acari: Phytoseiidae). Can. Ent. 117: 143152.CrossRefGoogle Scholar
Cameron, R.S., DeBarr, G.L., Godbee, J.F., and Taylor, J.W.. 1987. Potential alternative insecticides for insect control in southern pine seed orchards. pp. 182189in Proceedings of the Nineteenth Southern Forest Tree Improvement Conference. Sponsored Publ. 41. College Station, TX.Google Scholar
Clarke, S.R., DeBarr, G.L., and Berisford, C.W.. 1990. Effects of fenvalerate and azinphosmethyl on scale insects and their natural enemies in loblolly pine seed orchards. U.S.D.A. For. Serv. Res. Pap. SE-279. 14 pp.Google Scholar
DeBarr, G.L., and Fedde, V.H.. 1980. Contact toxicity of 17 insecticides to larvae of Dioryctria amatella (Lepidoptera: Pyralidae). Can. Ent. 112: 521523.CrossRefGoogle Scholar
DeBarr, G.L., and Nord, J.C.. 1978. Contact toxicity of 34 insecticides to second-stage nymphs of Leptoglossus corculus (Hemiptera: Coreidae). Can. Ent. 110: 901906.CrossRefGoogle Scholar
Ebel, B.H., Flavell, T.H., Drake, L.E., Yates, H.O. III, and DeBarr, G.L.. 1980. Seed and cone insects of southern pines. U.S.D.A. For. Serv. Gen. Tech. Rep. SE-8. 43 pp.Google Scholar
Fujie, G.H., and Fulmer, O.H.. 1978. Determination of FMC 33297 residues in plant, animal and soil matrices by gas chromatograph. J. Agric. Food Chem. 16: 395398.CrossRefGoogle Scholar
Howell, J.F., and Maitlen, J.C.. 1987. Accelerated decay of residual azinphosmethyl and phosmet by sprinkler irrigation above trees and its effect on control of codling moth based on laboratory bioassays as estimated by laboratory simulation of insecticide deposits. J. Agric. Ent. 4: 281288.Google Scholar
McMechan, A.D., Morgan, C.V.G., and Wardle, G.A.. 1972. Erosion of azinphosmethyl from apple leaves by rain and overtree irrigation. J. ent. Soc. B. C. 69: 58.Google Scholar
Nord, J.C. 1990. Toxicities of insecticide residues on loblolly pine foliage to leaffooted pine seed bug adults (Heteroptera: Coreidae). J. ent. Sci. 25: 39.Google Scholar
Nord, J.C., and DeBarr, G.L.. 1983. Contact toxicities of 12 insecticides to Leptoglossus corculus adults (Hemiptera: Coreidae). Can. Ent. 115: 211214.CrossRefGoogle Scholar
Nord, J.C., DeBarr, G.L., Barber, L.R., Weatherby, J.C., and Overgaard, N.A.. 1985. Low-volume applications of azinphosmethyl, fenvalerate, and permethrin for control of coneworms (Lepidoptera: Pyralidae) and seed bugs (Hemiptera: Coreidae and Pentatomidae) in southern pine seed orchards. J. econ. Ent. 78: 445450.CrossRefGoogle Scholar
Nord, J.C., DeBarr, G.L., Overgaard, N.A., Neel, W.W., Cameron, R.S., and Godbee, J.F.. 1984. High-volume applications of azinphosmethyl, fenvalerate, permethrin, and phosmet for control of coneworms (Lepidoptera: Pyralidae) and seed bugs (Hemiptera: Coreidae and Pentatomidae) in southern pine seed orchards. J. econ. Ent. 77: 15891595.CrossRefGoogle Scholar
Nord, J.C., and Pepper, W.D.. 1991. Rainfastness of insecticide deposits on loblolly pine foliage and the efficacy of adjuvants in preventing washoff. J. ent. Sci. 26: 287298.Google Scholar
Ray, A.R. (Ed.). 1982. SAS User's Guide: Statistics. SAS Institute, Cary, NC. 584 pp.Google Scholar
Steel, R.G.D., and Torrie, J.H.. 1960. Principles and Procedures of Statistics. McGraw-Hill, New York, NY. 481 pp.Google Scholar
Williams, I.H. 1976. Determination of permethrin by gas–liquid chromatography with electron capture detection. Pestic. Sci. 7: 336338.CrossRefGoogle Scholar
Williams, K. 1961. Note on the effect of rain, and sprinkler irrigation, on the persistence of spray residues of Guthion and Sevin on apple leaves. Can. J. Plant Sci. 41: 449451.CrossRefGoogle Scholar