Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T00:16:11.276Z Has data issue: false hasContentIssue false

Studies With Whitefly Parasites of Southern California: I. Encarsia pergandiella Howard (Hymenoptera: Aphelinidae)1

Published online by Cambridge University Press:  31 May 2012

Dan Gerling
Affiliation:
Postdoctoral appointee, Dry Lands Research Institute, University of California, Riverside. Paper No. 1685, Citrus Research and Agricultural Experiment Station, University of California, Riverside.

Abstract

Studies on the biology of Encarsia pergandiella Howard, a solitary, arrhenotokous endoparasite, revealed that fertilized eggs, which give rise to females, are deposited in whitefly nymphs preferably in second, third or fourth instar, while unfertilized eggs, which give rise to males, are deposited in Encarsia larvae at whose expense they develop. The parasite adults were observed to feed on body fluids of whitefly nymphs. Both sexes have a pupal and three larval stages, and development from egg to adult at approximately 75° F. takes 15 days for the females and 13 to 14 days for the males. Mean longevity of the females at constant and fluctuating temperatures was studied. Actual mean fecundity at 75 ± 4° F. was 48.5 eggs per female, all of which were deposited during the first 70% of her life, provided hosts were abundant. Field observations revealed that E. pergandiella was present throughout the year, reaching highest numbers in the spring and summer. The parasite does not have an obligatory period of dormancy for all of its individuals. E. pergandiella was not able to prevent whiteflies from causing heavy damage to plants. The reason may be in the discrepancy between the rate of increase of the whitefly and the parasite.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, B. R. 1964. Patterns in the host feeding habit of adult parasite Hymenoptera. Ann. ent. Soc. Amer. 57: 344350.CrossRefGoogle Scholar
Bartlett, B. R., and Ball, J. C.. 1964. The developmental biologies of two encyrtid parasites of Coccus hesperidium and their intrinsic competition. Ann. ent. Soc. Amer. 57: 497503.CrossRefGoogle Scholar
Burnett, T. 1949. The effect of temperature on an insect host parasite population. Ecology 30(2): 113134.CrossRefGoogle Scholar
De Bach, P. (Editor.) 1964. Biological control of insect pests and weeds. Reinhold Publishing Corporation, 844 & xxiv pp.Google Scholar
De Santis, L. 1948. Estudio monografico de los Aphelinidos de la Republica Argentina (Hymenoptera: Chalcidoidea). Rev. Mus. LaPlata (v): 23280.Google Scholar
Ferrière, Ch. 1965. Faune de l'europe et du bassin mediterranéen. I. Hymenoptera Aphelinidae. Masson et Cie, Paris. 206 pp. 80 illus.Google Scholar
Fisher, T. W. 1952. Comparative biologies of some species of Aphytis (Hymenoptera: Chalcidoidea) with particular reference to racial differentiation. Unpublished Ph.D. Thesis, Univ. of Calif., Riverside, 106 pp., 3 plates.Google Scholar
Flanders, S. E. 1938. Cocoon formation in endoparasitic chalcidoids. Ann. ent. Soc. Amer. 31(2): 167180.CrossRefGoogle Scholar
Flanders, S. E. 1942. Oosorption and ovulation in relation to oviposition in the parasitic Hymenoptera. Ann. ent. Soc. Amer. 35(3): 251266.Google Scholar
Flanders, S. E. 1955. The utilization of entomophagous insects. An mimeographed paper originating as a series of lectures presented at the University of Naples. 157 pp. (Unpublished.)Google Scholar
Gerling, D. 1966. Biological studies on Encarsia formosa (Hymenoptera, Aphelinidae). Ann. ent. Soc. Amer. 59(1): 142143.CrossRefGoogle Scholar
Girault, A. A. 1908. Encarsia versicolor species novum, an Eulophid parasite of the green-house whitefly Aleyrodes vaporariorum Westwood. Psyche 15: 5357.CrossRefGoogle Scholar
Howard, L. O. 1895. Revision of the Aphelininae of North America. U.S. Dep. Agr. Div. Ent. Tech. Bull. 1: 144.Google Scholar
Howard, L. O. 1907. New genera and species of Aphelininae with a revised table of genera. U.S. Dep. Agr. Bur. Ent., Misc. Papers, Tech. Ser. 12: 6988.Google Scholar
Mercet, R. G. 1930. Notas sobre Afelinidos, Afelinidos palearticos 4th nota. Eos, Madr. 4(2): 191199.Google Scholar
Munger, F. 1942. A method for rearing citrus thrips in the laboratory. J. econ. Ent. 35(3): 373375.CrossRefGoogle Scholar
Nowicky, S. 1929. Bermerkungen zur der Europaeischen Apheliniden-Gattungen. Z. wiss. Insektbiol. 15–16: 177181.Google Scholar
Parker, H. L. 1924. Recherches sur les formes postembryonaires de chalcidiens. Ann. Soc. ent. Fr. 93: 261379.CrossRefGoogle Scholar
Peck, O. 1963. A Catalogue of the Nearctic Chalcidoidea (Insecta: Hymenoptera). Canad. Ent. Suppl. 30, 1092 pp.Google Scholar
Peterson, A. 1959. Entomological Techniques, How to work with insects. Edwards Brothers, Inc., Ann Arbor, Michigan, 435 pp.Google Scholar
Stueben, M. 1949. Zur biologie de Chalcididae Encarsia tricolor. Biol. Zbl. 68: 413429.Google Scholar
Zinna, G. 1959. Richerche sugli insetti entomofagi. I. Specializzazione entomoparassitica negli Encyrtidae: Studio morfologico, etologico e fisiologico del Leptomastix dactylopii Howard. Bol. Lab. Ent. Agraria “Fillipo Silvestri” Portici 18: 1150.Google Scholar
Zinna, G. 1962. Richerche sugli insetti entomofagi. III. Specializzazione entomoparassitica negli Aphelinidae: Interdependenze biocenotiche tra due specie associate. Studio morfologico, etologico e fisiologico del Coccophagoides similis (Masi) e Azotus maritensis Mercet. Bol. Lab. Ent. Agraria “Fillipo Silvestri” Portici, 20: 73184.Google Scholar