Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T00:08:59.141Z Has data issue: false hasContentIssue false

SUSCEPTIBILITY OF RED SPRING WHEAT, TRITICUM AESTIVUM L. CV. KATEPWA, DURING HEADING AND ANTHESIS TO DAMAGE BY WHEAT MIDGE, SITODIPLOSIS MOSELLANA (GÉHIN) (DIPTERA: CECIDOMYIIDAE)1

Published online by Cambridge University Press:  31 May 2012

R.H. Elliott
Affiliation:
Agriculture and Agri-Food Canada Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
L.W. Mann
Affiliation:
Agriculture and Agri-Food Canada Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

In a 3-year field study, potted plants of ‘Katepwa’ wheat, Triticum aestivum L., were exposed to ovipositing wheat midge. Sitodiplosis mosellana (Géhin), to determine when spikes are most susceptible to damage. After exposure, plants were maintained under controlled conditions for 4 weeks and examined for wheal midge larvae and damaged kernels, ‘Katepwa’ wheat became susceptible to wheat midge damage shortly after spikes emerged from the boot leaf. Location of larvae and damaged kernels within spikes was influenced by the duration spikelets were exposed to oviposition and pattern of anthesis within spikes. In 1992, frequencies of larvae and damaged kernels were 60–90 times higher in spikes exposed to oviposition during advanced heading (stages 57–59, Zadoks’ code) than in those exposed during flowering (stages 61–69). Kernel damage in spikes exposed to oviposition during stages 57–59, 61–65, and 65–70 was 48.5, 3.2, and 0.2%, respectively, in 1993 and 21.2, 1.0, and 0.6%, respectively, in 1994. Data indicated that susceptibility to midge damage declined 15- to 25-fold between heading and early anthesis and 35- to 240-fold between heading and advanced anthesis. Potential factors contributing to these declines and concomitant reductions in larval frequencies are discussed.

Commercial fields of ‘Katepwa’ wheat should be monitored for ovipositing wheat midge throughout heading (stages 51–59) when spikes are most vulnerable to damage. Larval survival and kernel damage were so low after stage 61 that monitoring during anthesis should be unnecessary. Intensive inspection of fields throughout heading would ensure that chemical treatments are applied when they are necessary and most effective.

Résumé

Au cours d’une étude de 3 ans en nature, nous avons exposé des plants de blé «Katepwa», Triticum aestivum L., en pots à des Cécidomyies du blé, Sitodiplosis mosellana (Géhin), pendant la ponte, afin de déterminer à quel moment les épis sont le plus sensibles aux ravages. Après l’exposition, les plants ont été gardés dans des conditions contrôlées durant 4 semaines, puis le nombre de larves de cécidomyies et le nombre de grains endommagés ont été déterminés. Le blé «Katepwa» devient vulnérable aux dommages causés par l’insecte à partir de l’émergence des épis. La position des larves et des grains endommagés sur les épis dépend de la durée d’exposition des épillets à la ponte, et au déroulement de l’anthèse sur les épis. En 1992, la fréquence des larves et des grains endommagés s’est avérée de 60 à 90 fois plus élevée dans les épis exposés à la ponte au cours des derniers stades de formation des capitules (stades 57–59 selon le code de Zadoks) et durant la floraison (stades 61–69). Les dommages aux grains sur les épis exposés aux femelles pondeuses de cécidomyies au cours des stades 57–59, 61–65 et 65–70 ont été évalués à 48,5, 3,2 et 0,2% en 1993 et à 21,2, 1,0 et 0,6% en 1994. Les données indiquent que la vulnérabilité des plants devient de 15 à 25 fois moins grande entre la formation des capitules et le début de l’anthèse et de 35 à 240 fois moins élevée entre la formation des capitules et la fin de l’anthèse. Les facteurs qui peuvent contribuer à ces diminutions de la vulnérabilité et, par conséquent, à la réduction de la fréquence des larves, sont examinés.

Les cultures commerciales de blé «Katepwa» doivent être surveillées de près durant la ponte de la Cécidomyie du blé au cours du stade de formation des capitules (stades 51–59), moment où les épis sont le plus vulnérables aux ravages. La survie des larves et les dommages causés aux grains se sont avérés si faibles après le stade 61 que la surveillance durant l’anthèse n’est pas essentielle. La surveillance intensive des cultures durant la formation des capitules peut garantir que les traitements chimiques seront appliqués au moment où ils sont le plus utiles et le plus efficaces.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.K., and Reinbergs, E.. 1985. Barley breeding. pp. 231–266 in Rasmusson, D.C. (Ed.), Barley. Agronomy Monograph Series 26: 522 pp. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America (publishers), Madison, WI.Google Scholar
Anonymous. 1992. Prairie Grain Variety Survey. Report prepared by the three Wheat Pools. 29 pp.Google Scholar
Anonymous. 1993. Farm Facts, Control of Wheat Midge. Saskatchewan Agriculture and Food Publication. 2 pp.Google Scholar
Bailey, K.L., Harding, H., and Knott, D.R.. 1993. Transfer to bread wheat of resistance to common root rot [Cochliobolus sativus] identified in Triticum timopheevii and Aegilops ovata. Canadian Journal of Plant Pathology 15: 211219.CrossRefGoogle Scholar
Barnes, H.F. 1956. Gall midges of economic importance, volume 7. pp. 28–81 in Gall Midges of Cereal Crops. Crosby, Lockwood and Son Limited, London. 261 pp.Google Scholar
Basedow, T. 1980. Untersuchungen zur Prognose des Auftretens der Weizengallmücken Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Zeitschrift für angewandte Entomologie 90: 292299.CrossRefGoogle Scholar
Basedow, T., and Schutte, F.. 1973. Neue Untersuchungen uber Eiablage, wirtschaftliche Schadensschwelle und Bekömpfung der Weizengallmucken (Dipt: Cecidomyidae). Zeitschrift für angewandte Entomologie 73: 238251.CrossRefGoogle Scholar
Dexter, J.E., Preston, K.R., Cooke, L.A., Morgan, B.C., Kruger, J.E., Kilborn, R.H., and Elliott, R.H.. 1987. The influence of orange wheat blossom midge (Sitodiplosis mosellana Géhin) damage on hard red spring wheat quality and the effectiveness of insecticide treatments. Canadian Journal of Plant Science 67: 697712.CrossRefGoogle Scholar
Doane, J.F., DeClerck-Floate, R., and Arthur, A.P.. 1989. Description of the life stages of Macroglenes penetrans (Kirby) (Hymenoptera: Chalcidoidea, Pteromalidae), a parasitoid of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 121: 10411048.CrossRefGoogle Scholar
Doane, J.F., Olfert, O.O., and Mukerji, M.K.. 1987. Extraction precision of sieving and brine flotation for removal of wheat midge, Sitodiplosis mosellana (Diptera, Cecidomyiidae) cocoons and larvae from soil. Journal of Economic Entomology 80: 268271.CrossRefGoogle Scholar
Elliott, R.H. 1988 a. Evaluation of insecticides for protection of wheat against damage by the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 120: 615626.CrossRefGoogle Scholar
Elliott, R.H. 1988 b. Factors influencing the efficacy and economic returns of aerial sprays against the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 120: 941954.CrossRefGoogle Scholar
Hallman, G.J., Teetes, G.L., and Johnson, J.W.. 1984. Relationship of sorghum midge (Diptera: Cecidomyiidae) density to damage to resistant and susceptible sorghum hybrids. Journal of Economic Entomology 77: 8387.CrossRefGoogle Scholar
Huber, A.G., and Grabe, D.F.. 1987. Endosperm morphogenesis in wheat: Termination of nuclear division. Crop Science 27: 12521256.CrossRefGoogle Scholar
Huber, A.G., and Grabe, D.F.. 1989. Double fertilization in wheat Triticum aestivum: Terminology and photographs. Seed Science and Technology 17: 2739.Google Scholar
Lescar, L. 1977. Current practice in integrated cereal pest and disease control in north-western Europe. pp. 763–772 in Proceedings of the 9th British Crop Protection Conference—Pests and Diseases. British Crop Protection Council, London. 1045 pp.Google Scholar
Morrison, I.N. 1975. Ultrastructure of the cuticular membranes of the developing wheat grain. Canadian Journal of Botany 53: 20772087.CrossRefGoogle Scholar
Mukerji, M.K., Olfert, O.O., and Doane, J.F.. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. The Canadian Entomologist 120: 497505.CrossRefGoogle Scholar
Oakley, J.N. 1981. Wheat Blossom Midges. Ministry of Agriculture, Fisheries and Food, United Kingdom. Leaflet 788: 6 pp.Google Scholar
Olfert, O.O., Mukerji, M.K., and Doane, J.F.. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist 117: 593598.CrossRefGoogle Scholar
Pivnick, K.A., and Labbé, E.. 1992. Emergence and calling rhythms, and mating behaviour of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 124: 501507.CrossRefGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. Circular, United States Department of Agriculture 732: 18.Google Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, 5th ed. SAS Institute, Cary, NC. 956 pp.Google Scholar
Teetes, G.L. 1994. Adjusting crop management recommendations for insect-resistant crop varieties. Journal of Agricultural Entomology 11: 191200.Google Scholar
Vries, A.P. 1971. Flowering biology of wheat, particularly in view of hybrid seed production—A review. Euphytica 20: 152170.CrossRefGoogle Scholar
Wright, A.T., and Doane, J.. 1987. Wheat midge infestation of spring cereals in northeastern Saskatchewan. Canadian Journal of Plant Science 67: 117120.CrossRefGoogle Scholar
Zadoks, J.C., Chang, T.T., and Konzak, C.F.. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415421.CrossRefGoogle Scholar