Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T05:55:18.591Z Has data issue: false hasContentIssue false

USE OF STANDARD TEMPERATURE THRESHOLDS AND PHENOLOGICAL PREDICTION FOR THE EUROPEAN CORN BORER (OSTRINIA NUBILALIS HÜBNER) IN ALBERTA

Published online by Cambridge University Press:  31 May 2012

Douglas H. Kelker
Affiliation:
Department of Statistics and Applied Probability, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
Dennis A. Lee
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
John R. Spence
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Abstract

A degree-day model was developed for Alberta populations of Ostrinia nubilalis Hübner. Starting with overwintered fifth-instar larvae, the model calculates the temporal distribution of first- and second-instar larvae which are the stages most vulnerable to chemical suppression. Predictions from three alternative models were compared against field data from southern Alberta. Use of a standard 10°C growth threshold to calculate physiological time scales allowed predictions as accurate as those obtained using either a pooled threshold (11.4°C) calculated specifically from Alberta populations, or a model using two thresholds (12.3°C for fifth-instar larvae to adult and 10.2°C for eggs to second-instar larvae) that incorporated significant differences in growth characteristics observed among life stages. We conclude that standard thresholds are sufficient for degree-day models for northern populations of O. nubilalis. The standard model (t 0 = 10°C) predicts that moth emergence will peak at ca. 145 degree-days after median pupation, and that numbers of eggs, and first- and second-instar larvae should peak at 200, 310, and 450 degree-days, respectively. Model predictions can be used to time sampling effort in support of management decisions.

Résumé

Un modèle de degrés-jours a été développé concernant les populations d’Ostrinia nubilalis Hübner en Alberta. Débutant avec les larves hivernées du cinquième stade, le modèle estime la distribution temporelle des larves du premier et du deuxième stade, qui sont les plus vulnérables à la suppression chimique. Les prédictions issues de trois modèles différents ont été comparées avec les données obtenues dans le champ au sud de l’Alberta. L’utilisation d’un seuil de croissance normal de 10°C pour estimer les échelles physiologiques temporelles a permis des prédictions aussi valables que celles obtenues par l’utilisation soit d’un seuil accru (11,4°C) calculé spécifiquement à partir des populations de l’Alberta, soit d’un modèle qui utilise deux seuils (12,3°C en ce qui concerne le développement du cinquième stade larvaire à l’adulte et 10,2°C en ce qui concerne le développement de l’oeuf aux larves du deuxième stade), qui ont incorporés des différences significatives des caractères de croissance constatées parmi les stades vitaux. Nous avons conclu que les seuils normaux sont suffisants pour les modèles degrés-jours pertinents aux populations septentrionales d’O. nubilalis. Le modèle normal (t 0 = 10°C) prédit que l’éclosion des adultes atteindra son apogée à ca. 145 degrés-jours suivant la date de nymphose moyenne et que les nombres d’oeufs et de larves du premier et du deuxième stade devraient atteindre leurs apogées à 200,310 et 450 degrés-jours, respectivement. Les prédictions obtenues en utilisant les modèles peuvent être employées pour appuyer les décisions de gestion par la détermination de l’heure d’échantillonnage.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.E., Kennedy, G.G., and Stinner, R.E.. 1982. Temperature-dependent models of European corn borer (Lepidoptera: Pyralidae) development in North Carolina. Environ. Ent. 11: 11451150.CrossRefGoogle Scholar
Beck, S.D., and Apple, J.W.. 1961. Effects of temperature and photoperiod on voltinism of geographical populations of the European corn borer, Pyrausta nubilalis. J. econ. Ent. 54: 550558.CrossRefGoogle Scholar
Brown, G.C. 1982. A generalized phenological forecast model for the European corn borer. J. Kans. ent. Soc. 55: 625638.Google Scholar
Calvin, D.D., Knapp, M.C., Xingquan, K., Poston, F.L., and Welch, S.M.. 1986. Using a decision model to optimize European corn borer (Lepidoptera: Pyralidae) egg-mass sampling. Environ. Ent. 15: 12121219.CrossRefGoogle Scholar
Calvin, D.D., Welch, S.M., and Poston, F.L.. 1988. Evaluation of a management model for second-generation European corn borer (Lepidoptera: Pyralidae) for use in Kansas. J. econ. Ent. 81: 335343.CrossRefGoogle Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and MacKauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Dittrick, L.E., and Chiang, H.C.. 1981. Differences in the development responses of the European corn borer reared on corn plant versus meridic diet under greenhouse conditions. Environ. Ent. 10: 889892.CrossRefGoogle Scholar
Durman, C., Gleser, L., and Olkin, I.. 1973. A Guide to Probability Theory and Applications. Holt, Rhinehart, and Winston, New York.Google Scholar
Frazer, B.D., and Gilbert, N.. 1976. Coccinelids and aphids. J. ent. Soc. Brit. Col. 73: 3356.Google Scholar
Gilbert, N., Gutierrez, A.P., Frazer, B.D., and Jones, R.E.. 1976. Ecological Relationships. W.H. Freeman and Company, San Francisco.Google Scholar
Got, B., and Rudophe, F.. 1989. Temperature-dependent model for European corn borer (Lepidoptera: Pyralidae) development. Environ. Ent. 18: 8593.CrossRefGoogle Scholar
Higley, L.G., Pedigo, L.P., and Ostlie, K.R.. 1986. DEGDAY: a program for calculation of degree-days, and the assumptions behind the degree-day approach. Environ. Ent. 15: 9991016.CrossRefGoogle Scholar
Hilbert, D.W., and Logan, J.A.. 1983. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ. Ent. 12: 15.CrossRefGoogle Scholar
Hudes, E.S., and Shoemaker, C.A.. 1988. Inferential method for modeling insect phenology and its application to the spruce budworm (Lepidoptera: Tortricidae). Environ. Ent. 17: 97108.CrossRefGoogle Scholar
Lee, D.A. 1986. Phenology, life history and habitat selection of the European corn borer, Ostrinia nubilalis, in Alberta. M.Sc. thesis, University of Alberta, Edmonton. 212 pp.CrossRefGoogle Scholar
Lee, D.A. 1988 a. Factors affecting mortality of the European corn borer, Ostrinia nubilalis (Hübner), in Alberta. Can. Ent. 120: 841853.CrossRefGoogle Scholar
Lee, D.A. 1988 b. Moth density and oviposition patterns of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae), in Alberta. Environ. Ent. 17: 220224.CrossRefGoogle Scholar
Lee, D.A., and Spence, J.R.. 1986. Phenology of the European corn borer, Ostrinia nubilalis, in Alberta. Can. Ent. 118: 943956.10.4039/Ent118943-10CrossRefGoogle Scholar
Lee, D.A. 1987 a. Developmental adaptation in the European corn borer (Ostrinia nubilalis Hübner) in Alberta. Can. Ent. 119: 371380.CrossRefGoogle Scholar
Lee, D.A. 1987 b. Reproductive patterns of the European corn borer (Ostrinia nubilalis) in Alberta. Can. J. Zool. 65: 17331740.10.1139/z87-268CrossRefGoogle Scholar
Loewer, O.J., Huber, R.T., Barrett, J.R., and Peart, R.M.. 1974. Simulation of the effects of weather on an insect population. Simulation 22: 113118.CrossRefGoogle Scholar
Lysyk, T.J. 1989. A multiple-cohort model for simulating jack pine budworm (Lepidoptera: Tortricidae) development under variable temperature conditions. Can. Ent. 121: 373387.CrossRefGoogle Scholar
Onstad, D.W. 1988. Simulation model of the population dynamics of Ostrinia nubilalis (Lepidoptera: Pyralidae) in maize. Environ. Ent. 17: 969976.CrossRefGoogle Scholar
Pruess, K.P. 1983. Day-degree methods for pest management. Environ. Ent. 12: 613619.CrossRefGoogle Scholar
Sanborn, S.M., Wyman, J.A., and Chapman, R.K.. 1982. Threshold temperature and heat unit summations for seedcorn maggot development under controlled conditions. Ann. ent. Soc. Am. 75: 103106.CrossRefGoogle Scholar
Spence, J.R., Spence, D. Hughes, and Scudder, G.G.E.. 1980. The effects of temperature on growth and development of waterstrider species (Heteroptera: Gerridae) of central British Columbia and implications for species packing. Can. J. Zool. 58: 18131820.CrossRefGoogle Scholar
Showers, W.B., Reed, G.L., and Oloumi-Sadeghi, H.. 1974. Mating studies of female European corn borers: relationship between deposition of egg masses on corn and captures in light traps. J. econ. Ent. 67: 616619.CrossRefGoogle Scholar
Stirrett, G.M. 1933. Some characteristics of the flight and oviposition habits of the European corn borer, Pyrausta nubilalis Hübner. Ent. Soc. Ont. Rep. 53: 1221.Google Scholar
Tauber, M.J., and Tauber, C.A.. 1978. Evolution of phenological strategies in insects: a comparative approach with ecophysiological and genetic considerations. pp. 53–71 in Dingle, H. (Ed.), Evolution of Insect Migration and Diapause. Springer-Verlag, New York. 284 pp.Google Scholar
Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117: 123.CrossRefGoogle Scholar
Trimble, R.M., and Lund, C.T.. 1983. Intra- and interpopulation variation in the thermal characteristics of preadult development of two latitudinally diverse populations of Toxorhnychites rutilus septentrionalis (Diptera: Culicidae). Can. Ent. 115: 659662.CrossRefGoogle Scholar
Wagner, T.L., Hsin-l, W.U., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N.. 1984. Modeling insect development rates: a literature review and application of a biophysical model. Ann. ent. Soc. Am. 77: 208225.CrossRefGoogle Scholar
Witowski, J.F., Barber, D.T., and Currier, D.R.. 1986. Control of first-generation European corn borer (Lepidoptera: Pyralidae) larvae in Nebraska by applying insecticides by center-pivot irrigation systems. J. econ. Ent. 79: 15951598.10.1093/jee/79.6.1595CrossRefGoogle Scholar